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1. Introduction 

 

Probabilistic safety assessment (PSA) for nuclear 

power plants (NPPs) calculates risk by considering the 

interactions among diverse components and human 

responses, employing conservative assumptions 

regarding these factors. Due to the potential for these 

conservative assumptions to mask latent risks, 

supplementary methodologies have been suggested to 

integrate the dynamic behaviors of these factors. 

Nevertheless, these methodologies might augment the 

number of representative scenarios requiring simulation 

through computationally expensive physical models, 

such as thermal-hydraulic system codes. As a result, one 

of the fundamental practical challenges in dynamic PSA 

pertains to reducing computational burdens associated 

with simulating extensive scenarios. 

In addressing this challenge, the author’s previous 

research introduced a Deep learning-based Searching 

Algorithm for Informative Limit Surface/States/ 

Scenarios (Deep-SAILS) [1]. As depicted in Fig 1., the 

limit surface (LS) is a boundary between the regions of 

success and failure scenarios. Since the success or failure 

of any arbitrary scenario can be reasonably inferred using 

LS, pinpointing its location can be enlightening. Hence, 

this algorithm aims to identify LS while minimizing the 

number of simulations. Because it is hard to be explicitly 

located, this algorithm takes an alternative approach that 

is constraining LS through intensive simulations of 

scenarios proximate to the LS. 

 

 
Fig. 1. Limit surface example [1]. 𝑥1  and 𝑥2  represent 

dynamic factors and 𝐺(𝑋) is a limit state function. 

 

However, comprehending the LS with more than three 

dynamic factors can be intricate. One conceivable 

approach to grasp this multi-dimensional LS is to 

generate a cross-section; nevertheless, this method 

necessitates making static assumptions about certain 

dynamic factors. 

To resolve this issue, this study proposes a 

postprocessing algorithm for the high-dimensional (i.e., 

more than three dynamic factors) LS searched by Deep-

SAILS. This algorithm identifies a success box (i.e., 

hyperrectangle) that can cover a substantial portion of the 

successful scenarios, and then transforms the identified 

box into a decision tree. Through this algorithm, an 

intuitive representation of the high-dimensional success 

region bounded by LS can be provided. 

This paper comprises five sections. Section 2 offers a 

concise overview of Deep-SAILS. The proposed 

postprocessing algorithm is illustrated in Section 3. Case 

study results for both the general case and scenarios 

involving distributed dynamic factors are presented in 

Section 4. Section 5 provides the concluding remarks for 

this paper. 

 

2. Deep-SAILS 

 

Deep-SAILS is an iterative process of locating the LS 

using the metamodel, as illustrated in Fig. 2. The 

algorithm starts by simulating extreme scenarios with the 

highest and lowest dynamic factor values. Then, in the 

next step, a deep learning metamodel is trained using 

these simulation results. After that, the algorithm picks 

the scenarios to be simulated. It is conducted by first 

identifying the suspected scenarios based on the 

predicted result and predictive uncertainty of each 

scenario and second randomly sampling the scenarios 

among the suspected ones. When most of the scenarios 

have already been simulated, then the algorithm wraps 

up and stops. If not, the algorithm requests the simulation 

of the sampled ones. For more detailed information about 

the algorithm, please refer to [1]. 
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Fig. 2. Deep-SAILS flow chart [1]. Steps 2 – 4 are 

iterated until the stopping condition is satisfied. 

 

Figure 3 provides an illustrative example of the LS 

located by the Deep-SAILS. The green and red dots 

correspond to simulated scenarios, and the background 

color indicates the estimated peak cladding temperature 

(PCT) predicted by the trained deep-learning model. The 

area meeting the core damage threshold (i.e., 1478K) is 

depicted as white. As shown in this figure, LS searching 

of Deep-SAILS outcomes simulation results of scenarios 

that were sampled, primarily near the LS, and the deep-

learning model for non-sampled scenarios. 

 
Fig. 3. LS searching result example [1].  

 

 

3. Postprocessing of Limit Surface Searching Results 

 

The objective of the postprocessing algorithm for 

Deep-SAILS is to identify the frontier scenario that 

defines the optimal success box (i.e., hyperrectangle), 

which contains success scenarios in the box as many as 

possible.  In Fig. 4, frontier scenarios are depicted as blue 

dots and the identified scenarios as red dots, and the box 

configured by the identified one is shaded in red. 

 

 
Fig. 4. Concept of frontier scenarios and success box. 

 

As shown in the below Fig. 5, the success box can be 

easily converted into an easy-to-understand decision tree. 

This decision tree is a conservative yet intuitive 

representation of the LS, particularly for multi-

dimensional cases. 

 

 

 
Fig. 5. Decision tree converted from the success box. 

 

Similar research has been conducted by Park et. al [2, 

3]. This research locates the LS by populating the success 

regions with multiple ‘green’ (i.e., success) boxes [3] and 

converts the green boxes into an event tree [2]. However, 

this research considers hypercube only. As a result, the 

boxes were not optimized to incorporate as many success 

scenarios as possible. 

In contrast to the previous research, this study 

identifies a single box that encompasses as many success 

scenarios as possible. The algorithm comprises four 

major steps, as depicted in Figure 6, and is outlined 

below. 

 

Step 1. Initialization. The initial stage involves 

identifying frontier scenarios through LS search 

outcomes. Frontier scenarios are those scoring a U-

learning function [4] values lower than D, a suspicion 

range (a hyperparameter of Deep-SAILS) [1]. 

Additionally, to evaluate outcomes for non-simulated 

scenarios, a deep learning metamodel is employed. 

 

Step 2. Sorting by Hyperrectangle Size. In this stage, 

the size of the success box formed by all frontier 

scenarios is computed. If the frontier is determined by 

𝑘𝑡ℎ and 𝑙𝑡ℎ  values of dynamic factors originating from 



Transactions of the Korean Nuclear Society Autumn Meeting 

Gyeongju, Korea, October 26-27, 2023 

 

 
success, the size is given by 𝑘 × 𝑙. Subsequently, the 

frontiers are organized based on their size. 

 

Step 3. Integrity Check. The following step involves 

examining the surfaces of the success box, starting with 

the one having the largest size. If the surfaces contain 

failure scenarios, then the algorithm proceeds to 

scenarios with the subsequent largest size. 

 

Step 4. Decision Tree Conversion. If the integrity of 

the success box is confirmed, a decision tree is 

constructed based on dynamic factor values of the 

corresponding frontier scenario. 

 

 
Fig. 6. Flowchart of the postprocessing algorithm. 

 

4. Case Study 

 

To validate the proposed algorithm, a case study 

involving arbitrary PCT data was conducted. Even 

though the algorithm is for the LS with more than three 

dynamic factors, we only assumed two dynamic factors 

for this case study to give illustrative examples. The 

dynamic factors, 𝑥1 and 𝑥2, are varying within the range 

of 0.01 to 0.99 with an increment of 0.02. As a result, a 

total of 2,500 scenarios were formulated. The PCTs for 

these scenarios were determined using Equation 1. The 

failure criterion was 1478 K. 

 

(1)       𝑃𝐶𝑇(𝑥1, 𝑥2) = 700(𝑥1
2 + 𝑥2

2) + 700   
 

Figure 7 shows the outcomes obtained from Deep-

SAILS and the postprocessing algorithm. Similar to Fig. 

3, the dots and background denote the simulated 

scenarios and PCT predictions by the deep-learning 

model, respectively. Deep-SAILS precisely pinpointed 

the LS and intensively simulated the scenarios in 

proximity to it. Additionally, the postprocessing 

algorithm successfully identified the success box 

containing the success scenarios as many as possible. 

The frontier scenario corresponding to this box is where 

𝑥1 = 0.75  and 𝑥2 = 0.73 . Consequently, the decision 

tree that can represent the LS is depicted in Fig. 8. 

 

 
Fig. 7. Deep-SAILS results and optimal box (red-shaded 

area) with the identified frontier (yellow dot). 

 

 
Fig. 8. Decision tree for the hyperrectangle in Fig. 7. 

 

In some cases, a dynamic factor may adhere to a 

certain distribution, necessitating the sampling of axes 

according to this distribution. In such cases, the optimal 

success box should be adjusted, as depicted in Figure 9. 

 

 
Fig. 9. Optimal frontier scenario and success box when 

dynamic factor follows a distribution. 

 

To examine the behavior of the postprocessing 

algorithm when certain axes are sampled according to a 

distribution, we considered the scenarios where 𝑥1 
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follows an exponential distribution [i.e.,  

𝑥1~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(3.0)]. As a result, it was observed 

that the algorithm adjusted its initial estimation to 𝑥1 =
0.57 and 𝑥2 = 0.87. 

 
Fig. 10. Deep-SAILS results and optimal box with the 

identified frontier when 𝑥1~ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(3.0).   

 

Even though previous results show that the algorithm 

can optimize the success box to contains as many success 

scenarios as possible, the underlying limitation of the 

proposed postprocessing algorithm is that a single 

success box can remain a significant number of other 

success scenarios. Since this single-box algorithm may 

be too conservative and could mask the LS searching 

result, further study will be conducted to refine the 

algorithm to determine the optimal number of boxes that 

can cover most success scenarios This approach aligns 

with the study conducted by Park et al. [2, 3]. 

 

5. Conclusion 

 

Localized scenarios (LSs) can offer valuable insights. 

However, understanding LSs becomes challenging in 

multi-dimensional contexts. To tackle this issue, this 

study proposes a postprocessing algorithm designed for 

LSs identified by Deep-SAILS. This algorithm identifies 

the optimal success box (hyperrectangle) that 

accommodates a maximum number of success scenarios 

and transforms it into a decision tree. 

To verify the algorithm's effectiveness, case studies 

were carried out using both arbitrary data and the data 

with the dynamic factor following a distribution. Notably, 

these case studies were limited to low-dimensional 

scenarios, serving to demonstrate the algorithm's 

functionality. Therefore, future research will address 

high-dimensional scenarios involving more than three 

dynamic factors, along with plant accident scenarios and 

simulation through the system codes. Additionally, the 

process to determine the optimal number of boxes will 

be developed and integrated into the proposed algorithm. 
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