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01. Introduction

o MSLB scenario is selected - A large SLB inside the containment at full-power
operation + LOOP concurrent + single failure and a stuck CEA (SLBFPLOOP)

o APR-1400 is the modelled plant

o First step is one way coupling of RELAP5/SCDAPSIM/MOD 3.4 with a point kinetics
model to simulate core neutronics

o Followed by two way coupling of RELAP5/SCDAPSIM/MOD 3.4 with 3DKIN for core
neutronics response

o Then a comparison of results for the two models
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01. Accident Description o
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The largest possible size of SLB is the double-ended rupture of a steam line upstream of the MSIV
\,

The excessive energy removal results in a decrease in temperature and pressure in the RCS and SG
A

The cooldown causes an increase in core reactivity due to the negative moderator and Doppler
reactivity coefficients

\

MSLB has potential for post-trip RTP (cases inside containment)
A\
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02. Methodology  KIN

Thermal-hydraulic (TH) model using RELAP5/SCDAPSIM/MOD3.4 with a point kinetics
model to simulate core neutronics

« Steady state validation
« Transient response modelling

RELAP5/SCDAPSIM/MOD 3.4 is used to simulate the thermal-hydraulic response and
coupled with 3DKIN for core neutronics response

» Steady state validation

* Transient response modelling




03. Point Kinetics Mode

APR-1400 Nodalization

/Steam Generators (SGS)\

Two SGs - each connected to the
RPV via one hot leg and two cold leg
Heat generated on the primary side
is transferred to the SGs via the u-

tubes
The u-tube section is modeled with
equivalent heat transfer and

pressure drop conditions

Secondary water is provided by the
Main Feedwater System (MFWS) as
boundary condition

Steam generated in the SGs is
directed via the main steam line to
the turbine modeled as a boundary
condition

Other important components of the

dryer, dome

SGs are:  evaporator, separatfy

/ Reactor Pressure Vessel \

(RPV)

The core is represented using an
average and a hot channel,
surrounded by an annular core
shroud together with the core bypass

U - B
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[Main Steam System (MSS)\

The Main Steam System (MSS) has
four main steam lines leading from the
two SGs to a common header, and
then to the turbine through an isolation
valve.

Each line is connected to a set of Main
Steam Safety Valves (MSSVs) to
protect the system against over-
pressurization.

1
1
]

The core connects to an upper
plenum and a lower plenum

Two hot legs lead the coolant from
the RPV to the SGs u-tubes, four
cold legs connect the RCPs to the
downcomer

The downcomer is modeled using
annulus six components

e

~

Maintains operational pressure in the
primary system loop.

Pressurizer (PZR)

In  steady-state, the pressurizer
pressure is imposed by a boundary
condition. In transient, the pressure is
determined by the system conditions
and Pilot-Operated Safety Relief
Valves (POSRVs) operation.




04. Nodal Kinetics Modeln
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04. Nodal Kinetics Model
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Core Structure

Core Mapping — 3DKIN
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04. Nodal Kinetics Modelu'j

L

»

A

Core Nodalization - RELAP

| 150 |

200 | ‘ | | 200 ‘
L ] ™
220 | 223 | 225
230 |233 | 235
| 180 |
_ x L]
| 170 |-
£ 240 | 243 | 245
250 253 255
‘ 160 | | | [
260 | 263 | 265
270 | 273 | 275 | | gy 150
T T T 41 142 146 39 13d 31 fis0
£ 280 | 283 | 283
205 | 2903 | 200 ‘ 123 121 H 120 |

‘ 118 H 116

100

| 152 |




/
04. Nodal Kinetics Model

Loading Pattern and Fuel assembly Data

Co | BO| CO | BO
FA No. of Fuel Fuel Rod No. of Rods No. of Gd203 Gd203
| | B2)Bl|B| Type = Assemblies Enrichment per Rods per Enrichment
(w/0) Assembly Assembly (w/0)
| Cl | Bl | AO | C3 | AO| B3
A0 77 1.71 236 - -
Cco|Cl| B3| AO| B3| A0 | B1 | A0 BO 12 3.14 236 _ _
ol Bl laol @l aol 3l a0l Bl Bl 28 3.14/2.64 172/52 12 8
B2 8 3.14/2.64 124/100 12 8
Cco 36 3.64/3.14 184/52 - -
BoO| Bl | C3 ] A0 | C3 | AO| C2 | AD| C3 C1 8 3.64/3.14 172/52 12 8
C2 12 3.64/3.14 168/52 16 8
€0 | B3 | A0 Bl | A0 | B3 | A0 | B3 | A0 C3 20 3.64/3.14 120/100 16 8
BO| C | B3| A0 | Bl | AO| C3 | AO| A0
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04. Nodal Kinetics

First Cycle FA Configurations

B Gd.0:rods

@ water hole [] Normal enriched fuel pin [l Low enriched fuel pin
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05. Results

Point Kinetics Model — Steady State

Parameter DCD Model

Initial Power level (MWI) 4062 4062

Initial core inlet coolant temperature, °C 295 290

Initial core mass flow rate kg/s 19344.44 19318

Initial pressurizer pressure, kg/cm2A 163.46 163.13

Initial pressurizer water volume, m3 39.91 39.94

Axial Shape Index 0.3 0.3

CEA worth for trip %A -9.3 -9.3
Moderator coefficient most negative most negative
Doppler coefficient most negative most negative
Initial steam generator liquid inventory per SG, kg 124113 124595

Two safety injection pumps Inoperable Inoperable

Core burn up End of cycle End of cycle
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05. Results

Point Kinetics Model - TransientResponse

12
Point Model Moderator
====-DCD —~60 hW ,====== ————ae——. 8
$ — - - —-- -____--.._---—-
)
£ Point Model (affected o Doppler
=== D245 int Model (affected) S 4 /
cSeccrcceee- B/ Point Model (unaffected) S B
L ?, 30 = ===-DCD (affected) = 0
g ----- DCD (unaffected) é
I a = % Scram
® 15 o 4
2 = @ -
Sy T Total Reactivity
0 2N . S
0 200 400 600
. 0 200 400 600 "
Tim i
&(s) Time(s) 12 Time (s)
0 200 400 600
L] L] L] L]
L [ ] - . L]

13



/

/

Core Power (%)

100

80

60

40

20

Point Model
=====DCD

200 400
Time (s)

600

05. Results

Point Kinetics Model - TransientResponse
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05. Results

Nodal Kinetics Model - Steady State
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05. Results

Nodal Kinetics Model - Transient Response
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05. Results

Nodal Kinetics Model — TransientResponse
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05. Results

Nodal Kinetics Model — TransientResponse
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06. Conclusion

This project modelled the MSLB (inside the containment at full power operation +
LOOP concurrent + single failure and a stuck CEA) on the APR1400

As the initial step of this study, one way coupling of thermal hydraulics model with
point kinetics is conducted to provide insight into the behavior of the core.

Next is modelling of the MSLB using multi-physics approach using nodal kinetics for
a high-fidelity simulation.

The results show that multi-physics approach can show the asymmetric behaviour
of the core during transients.

The results also indicate that both the point and nodal kinetics are good tools to
model the transient, and can reveal different aspects of the transient.
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