Analysis of a Postulated Main Steam Line Break Accident using Multi-Physics Simulation

Ditsietsi Malale and Aya Diab

Thermal Hydraulics and Nuclear Safety Laboratory KEPCO International Nuclear Graduate School

Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2023

 \bigcirc

01. Introduction

- MSLB scenario is selected A large SLB <u>inside the containment</u> at full-power operation + LOOP concurrent + single failure and a stuck CEA (SLBFPLOOP)
- APR-1400 is the modelled plant
- First step is one way coupling of RELAP5/SCDAPSIM/MOD 3.4 with a point kinetics model to simulate core neutronics
- Followed by two way coupling of RELAP5/SCDAPSIM/MOD 3.4 with 3DKIN for core neutronics response
- Then a comparison of results for the two models

01. Accident Description

The largest possible size of SLB is the double-ended rupture of a steam line upstream of the MSIV

The <u>excessive energy removal</u> results in a decrease in temperature and pressure in the RCS and SG

The <u>cooldown causes an increase in core reactivity</u> due to the negative moderator and Doppler reactivity coefficients

MSLB has potential for post-trip <u>RTP</u> (cases inside containment)

02. Methodology

- Steady state validation
- Transient response modelling

RELAP5/SCDAPSIM/MOD 3.4 is used to simulate the thermal-hydraulic response and coupled with 3DKIN for core neutronics response

- Steady state validation
- Transient response modelling

03. Point Kinetics Model

APR-1400 Nodalization

Steam Generators (SGs)

6

- Two SGs each connected to the RPV via one hot leg and two cold leg
- Heat generated on the primary side is transferred to the SGs via the utubes
- The u-tube section is modeled with equivalent heat transfer and pressure drop conditions
- Secondary water is provided by the Main Feedwater System (MFWS) as boundary condition
- Steam generated in the SGs is directed via the main steam line to the turbine modeled as a boundary condition
- Other important components of the SGs are: evaporator, separator, dryer, dome

Reactor Pressure Vessel (RPV)

- The core is represented using an average and a hot channel, surrounded by an annular core shroud together with the core bypass
- The core connects to an upper plenum and a lower plenum
- Two hot legs lead the coolant from the RPV to the SGs u-tubes, four cold legs connect the RCPs to the downcomer
- The downcomer is modeled using annulus six components

Main Steam System (MSS)

- The Main Steam System (MSS) has four main steam lines leading from the two SGs to a common header, and then to the turbine through an isolation valve.
- Each line is connected to a set of Main Steam Safety Valves (MSSVs) to protect the system against overpressurization.

Pressurizer (PZR)

- Maintains operational pressure in the primary system loop.
- In steady-state, the pressurizer pressure is imposed by a boundary condition. In transient, the pressure is determined by the system conditions and Pilot-Operated Safety Relief Valves (POSRVs) operation.

04. Nodal Kinetics Model

Loading Pattern and Fuel assembly Data

					C0	B0	C0	B0						
			C0	C0	B2	B1	В3	C2	FA	No. of Fuel	Fuel Rod	No. of Rods	No. of Gd ₂ O ₃	Gd ₂ O ₃ Enrichment
									Type	Assemblies				
		C0	C1	B1	A0	C3	A0	B3			(W/O)	Assembly	Assembly	(W/O)
									A0	77	1.71	236	-	-
	C0	C1	B3	A0	B3	A0	B1	A0	B0	12	3.14	236	-	-
	~	D1	10	m	10	C 2	10	D1	B1	28	3.14/2.64	172/52	12	8
	u	ы	AU	02	AU	CS	AU	ы	B2	8	3.14/2.64	124/100	12	8
CO	B2	A0	B3	A0	B3	A0	B3	A0	B3	40	3.14/2.64	168/52	16	8
									C0	36	3.64/3.14	184/52	-	- / •
B 0	B1	C3	A0	C3	A0	C2	A0	C3	C1	8	3.64/3.14	172/52	12	8 •
								C2	12	3.64/3.14	168/52	16	8	
C0	B3	A0	B1	A0	B3	A0	B3	A0	C3	20	3.64/3.14	120/100	16	8
B 0	C2	В3	A0	B1	A0	C3	A0	A0						•

10

KINGS

Nodal Kinetics Model 04.

C0

B3, C2

First Cycle FA Configurations

 $oldsymbol{O}$

Water hole

Gd₂O₃ rods

ERNA

LEAR

05. Results

05. Res Point Kinetics Model	Sults - Steady State	KING REPCO
Parameter	DCD	Model
Initial Power level (MWt)	4062	4062
Initial core inlet coolant temperature, °C	295	290
Initial core mass flow rate kg/s	19344.44	19318
Initial pressurizer pressure, kg/cm2A	163.46	163.13
Initial pressurizer water volume, m3	39.91	39.94
Axial Shape Index	0.3	0.3
CEA worth for trip $\% \Delta \rho$	-9.3	-9.3
Moderator coefficient	most negative	most negative
Doppler coefficient	most negative	most negative
Initial steam generator liquid inventory per SG, kg	124113	124595
Two safety injection pumps	Inoperable	Inoperable
Core burn up	End of cycle	End of cycle

LEAR

KINGS

05. Results

Point Kinetics Model – Transient Response

13

600

Time (s)

0

05. Results

1.20 1.18

1.18 0.8

05. Results

Nodal Kinetics Model – Steady State

1.20

					0.80	1.02	1.16	1.12	1.16	1.02	0.80							
			0.82	1.14	1.07	1.13	1.10	1.18	1.10	1.13	1.07	1.15	0.82					
		0.85	1.12	1.16	0.98	1.15	0.98	1.06	0.98	1.15	0.98	1.16	1.12	0.85				
	0.82	1.12	1.04	0.95	1.03	0.94	1.12	0.95	1.12	0.94	1.04	0.95	1.04	1.12	0.82			0.85
,	1.14	1.16	0.95	1.11	0.89	1.05	0.90	1.06	0.90	1.06	0.90	1.11	0.95	1.16	1.15			1.18
0.80	1.07	0.98	1.03	0.89	0.95	0.85	0.94	0.85	0.94	0.85	0.96	0.90	1.04	0.98	1.07	0.80	0.78	1.06
1.02	1.13	1.15	0.94	1.05	0.85	1.00	0.81	0.96	0.81	1.00	0.85	1.06	0.94	1.15	1.13	1.02	1.01	1.14
1.16	1.10	0.98	1.12	0.90	0.94	0.81	0.87	0.79	0.87	0.81	0.94	0.90	1.12	0.98	1.10	1.16	1.15	1.11
1.12	1.18	1.06	0.95	1.06	0.85	0.96	0.79	0.81	0 79	0.96	0.85	1.07	0.95	1.06	1.18	1.12	1.11	1.20
1.16	1.10	0.98	1.12	0.90	0.94	0.90	0.87	0.79	0.87	0.90	0.94	0.90	1.12	0.98	1.10	1.16	1.15	1.11
1.02	1.10	1.15	0.04	1.05	0.94	1.00	0.81	0.06	0.07	1.00	0.94	1.05	0.04	1.15	1.10	1.02	1.01	1.14
0.80	1.13	0.08	1.02	0.80	0.05	0.85	0.01	0.90	0.04	0.85	0.05	0.80	1.02	0.08	1.13	0.80	0.78	1.06
0.80	1.07	0.98	1.03	0.89	0.95	0.85	0.94	0.85	0.94	0.85	0.95	0.89	1.03	0.98	1.07	0.80		1.18
	1.15	1.16	0.95	1.11	0.89	1.05	0.90	1.06	0.90	1.05	0.89	1.11	0.95	1.16	1.14			0.85
	0.82	1.12	1.04	0.95	1.03	0.94	1.12	0.95	1.12	0.94	1.03	0.95	1.04	1.12	0.82			
		0.85	1.12	1.16	0.98	1.15	0.98	1.06	0.98	1.15	0.98	1.16	1.12	0.85				
			0.82	1.15	1.07	1.13	1.10	1.18	1.10	1.13	1.07	1.14	0.82					
)e /e					0.80	1.02	1.16	1.12	1.16	1.02	0.80							

DCD

0.96 1.13 0.88 1.06 0.88 1.07 0.88 1.06 0.88 1.13 0.96

0.78 1.01 1.15 1.11 1.15 1.01 0.78

0.85 1.18 1.06 1.14 1.11 1.20 1.11 1.14 1.06

 1.16
 1.08
 0.96
 1.04
 0.93
 1.13
 0.93
 1.13
 0.93
 1.04
 0.96
 1.08
 1.16
 0.85

 0.88
 1.16
 1.20
 0.98
 1.16
 0.97
 1.07
 0.97
 1.16
 0.98
 1.20
 1.16
 0.88

1.01 1.15 1.11 1.15 1.01 0.78

 0.85
 1.18
 1.06
 1.14
 1.11
 1.20
 1.11
 1.14
 1.06
 1.18
 0.85

 0.88
 1.16
 1.20
 0.98
 1.16
 0.97
 0.97
 1.16
 0.98
 1.16
 0.85

 1.16
 1.08
 1.02
 1.03
 0.97
 1.16
 0.98
 1.06
 0.88
 1.06
 0.88

 1.16
 1.08
 1.03
 0.93
 1.13
 0.93
 1.13
 0.93
 1.04
 0.96
 1.08
 0.88

 1.00
 0.96
 1.01
 0.98
 1.03
 0.93
 1.01
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.03
 0.98
 1.01
 1.03

 0.03
 1.04
 0.93
 0.93
 0.93
 0.93
 0.93
 0.93
 0.93
 0.93
 0.93
 0.93

0.78

Model

t = 5.96 s

t = 600

05. Results

Nodal Kinetics Model – Transient Response

0.79 1.01 1.13 1.07 1.13 1.01 0.79 0.80 1.12 1.04 1.11 1.07 1.16 1.07 1.11 1.04 1.12 0.80 0.82 1.09 1.14 0.97 1.13 0.97 1.05 0.97 1.14 0.97 1.14 1.09 0.82 0.80 1.09 1.02 0.94 1.03 0.95 1.13 0.96 1.13 0.95 1.03 0.94 1.02 1.09 0.80 1.12 1.14 0.94 1.11 0.91 1.08 0.92 1.09 0.92 1.08 0.91 1.11 0.94 1.14 1.12 104 0.97 1.03 0.91 0.98 0.88 0.97 0.88 0.97 0.88 0.98 0.91 1.03 0.97 1.04 0.79 1.01 1.11 1.13 0.95 1.08 0.88 1.05 0.85 1.00 0.85 1.05 0.88 1.08 0.95 1.14 1.11 1.01 1.13 1.07 0.97 1.13 0.92 0.97 0.85 0.92 0.84 0.92 0.85 0.97 0.92 1.13 0.97 1.07 1.13 1.07 1.16 1.05 0.96 1.09 0.88 1.00 0.84 0.86 0.84 1.00 0.88 1.09 0.96 1.05 1.16 1.08 1.13 1.07 0.97 1.13 0.92 0.97 0.85 0.92 0.84 0.92 0.85 0.97 0.92 1.13 0.97 1.07 1.13 1.01 1.11 1.13 0.95 1.08 0.88 1.05 0.85 1.00 0.85 1.05 0.88 1.08 0.95 1.13 1.11 1.01 0.79 1.04 0.97 1.03 0.91 0.98 0.88 0.97 0.88 0.97 0.88 0.98 0.91 1.03 0.97 1.04 0.79 1.12 1.14 0.94 1.11 0.91 1.08 0.92 1.09 0.92 1.08 0.91 1.11 0.94 1.14 1.12 0.80 1.09 1.02 0.94 1.03 0.95 1.13 0.96 1.13 0.95 1.03 0.94 1.02 1.09 0.80 0.82 1.09 1.14 0.97 1.13 0.97 1.05 0.97 1.13 0.97 1.14 1.09 0.82 0.80 1.12 1.04 1.11 1.07 1.16 1.07 1.11 1.04 1.12 0.80 0.79 1.01 1.13 1.08 1.13 1.01 0.7

0.77 0.98 1.11 1.07 1.11 0.98 0.77 0.79 1.11 1.04 1.10 1.07 1.15 1.07 1.10 1.04 1.11 0.79 0.82 1.09 1.14 0.97 1.14 0.97 1.06 0.97 1.14 0.97 1.14 1.09 0.82 0.79 1.09 1.03 0.95 1.04 0.95 1.14 0.96 1.14 0.95 1.04 0.95 1.03 1.09 0.79 1.11 1.14 0.95 1.12 0.91 1.08 0.93 1.10 0.93 1.08 0.91 1.12 0.95 1.14 1.11 1.04 0.97 1.04 0.91 0.98 0.88 0.98 0.89 0.98 0.88 0.99 0.91 1.04 0.97 1.04 0.77 0.98 1.10 1.14 0.95 1.08 0.88 1.05 0.86 1.01 0.86 1.05 0.88 1.08 0.95 1.14 1.10 0.98 1.11 1.07 0.97 1.14 0.93 0.98 0.86 0.93 0.84 0.93 0.86 0.98 0.93 1.14 0.97 1.07 1.11 1.07 1.15 1.06 0.96 1.10 0.89 1.01 0.84 0.87 0.84 1.01 0.89 1.10 0.96 1.06 1.15 1.07 1.11 1.07 0.97 1.14 0.93 0.98 0.86 0.93 0.84 0.93 0.86 0.98 0.93 1.14 0.97 1.07 1.11 0.98 1.10 1.14 0.95 1.08 0.88 1.05 0.86 1.01 0.86 1.05 0.88 1.08 0.95 1.14 1.10 0.98 104 097 104 091 098 088 098 089 098 088 098 091 104 097 104 077 1.11 1.14 0.95 1.12 0.91 1.08 0.93 1.10 0.93 1.08 0.91 1.12 0.95 1.14 1.11 0.79 1.09 1.02 0.95 1.04 0.95 1.14 0.96 1.14 0.95 1.04 0.95 1.03 1.09 0.79 0.82 1.09 1.14 0.97 1.14 0.97 1.06 0.97 1.14 0.97 1.14 1.09 0.82 0.79 1.11 1.04 1.10 1.07 1.15 1.07 1.10 1.04 1.11 0.79 0.77 0.98 1.11 1.07 1.11 0.98 0.77

t = 0.013 s

0.88 1.12 1.21 1.02 1.22 1.13 0.88 0.89 1.20 1.01 1.17 1.02 1.17 1.02 1.17 1.02 1.21 0.89 0.78 1.14 1.08 0.97 1.06 0.96 0.98 0.96 1.07 0.98 1.08 1.15 0.78 0.89 1.14 0.96 0.94 0.97 0.95 1.05 0.94 1.05 0.95 0.97 0.94 0.97 1.15 0.89 1.08 0.94 1.04 0.91 1.12 0.93 1.01 0.93 1.12 0.92 1.04 0.94 1.08 1.21 0.87 101 0.97 0.97 0.91 0.92 0.89 0.92 0.89 0.92 0.89 0.92 0.92 0.97 0.98 102 0.88 1.12 1.17 1.06 0.95 1.12 0.89 0.98 0.86 1.05 0.86 0.98 0.89 1.12 0.96 1.07 1.17 1.13 0.96 1.05 0.93 0.92 0.86 0.87 0.84 0.87 0.86 0.92 0.93 1.05 0.96 1.02 1.22 1.02 1.17 0.98 0.94 1.01 0.89 1.05 0.84 0.80 0.84 1.05 0.89 1.02 0.94 0.98 1.17 1.02 121 102 096 105 093 092 086 087 084 087 086 092 093 105 096 102 122 1.12 1.17 1.06 0.95 1.12 0.89 0.98 0.86 1.05 0.86 0.98 0.89 1.12 0.95 1.07 1.17 1.13 0.87 1.01 0.97 0.97 0.91 0.92 0.89 0.92 0.89 0.92 0.89 0.92 0.92 0.97 0.98 1.02 0.88 120 108 0.94 103 0.91 112 0.93 101 0.93 112 0.92 1.04 0.94 1.08 1.21 0.89 1.14 0.96 0.94 0.97 0.95 1.05 0.94 1.05 0.95 0.97 0.94 0.97 1.15 0.89 0.78 1.14 1.08 0.97 1.06 0.96 0.98 0.96 1.07 0.98 1.08 1.15 0.78 0.89 1.20 1.01 1.17 1.02 1.17 1.02 1.17 1.02 1.21 0.89 0.87 1.12 1.21 1.02 1.22 1.13 0.88

t = 22.86 s

Results 05.

Nodal Kinetics Model – Transient Response

OUNTERNATIC

. . .

LEAR

•

19

. .

06. Conclusion

- This project modelled the MSLB (inside the containment at full power operation + LOOP concurrent + single failure and a stuck CEA) on the APR1400
- As the initial step of this study, one way coupling of thermal hydraulics model with point kinetics is conducted to provide insight into the behavior of the core.
- Next is modelling of the MSLB using multi-physics approach using nodal kinetics for a high-fidelity simulation.
- The results show that multi-physics approach can show the asymmetric behaviour of the core during transients.
- The results also indicate that both the point and nodal kinetics are good tools to model the transient, and can reveal different aspects of the transient.

Questions and answers

Acknowledgements

This research was supported by the 2023 Research Fund of the KEPCO International Nuclear Graduate School (KINGS), the Republic of Korea