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Introduction 

 

 

 

 

 

 

 

 Accurate simulation of SMR's helical steam generators is vital for 

optimizing design, ensuring safety, and enhancing efficiency in 

nuclear power plants.  

 Precise simulations are key to meeting safety standards and 

maximizing energy production using SMR's helical steam generators.  

 Due to the unique flow boiling mechanism in helical coil tubes, 

understanding their characteristics is essential. 
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Boiling heat transfer inside a helical coil tube 

 

 

 

 

 

 

 

 Strengthening centrifugal force intensifies outer-side convection heat 

transfer 

 The centrifugal force leads to even distribution of the liquid film and 

consequently, enhances boiling heat transfer  

Secondary flow effect inside a helical coil tube 

Flow regime inside a helical coil tube 
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Data collection 

 

 

 

 

 

 

 

 A total of 13 sets of experimental data for helically coiled tubes and straight tubes 

Investigator(s) Tube type di (mm) DHC/di 

(-) 

P 

(MPa) 

q 

(kW/m2) 

G 

(kg/m2s) 

Direction Data points 

Chang (2023)   

  

  

  

Helically coiled 

tube 

8.0 
81.3 8.0 ~ 14.0 

100.0 ~ 300.

0 
500.0 ~ 1,000.0 

  

  

  

  

Vertical 

36 

Hardik (2017) 8.0 /  

9.7 
14.4/ 17.1 0.14 ~ 0.28 

290.0 ~ 620.

0 
129.0 ~ 400.0 41 

Owhadi (1966) 12.5 20.0/ 41.8 0.10 ~ 0.21 60.8 ~ 253.6 77.0 ~ 314.0 235 

Santini (2016) 12.5 80.1 2.0 ~ 6.0 46.0 ~ 200.0 200.0 ~ 820.0 60 

Xiao (2018) 12.5 / 14.5 
12.4 /14.4 / 

26.2 /30.4 
2.0 ~ 7.6 

300.0 ~ 400.

0 
600.0 ~ 800.0 23 

Xiao (2018) 14.5 
12.4 2.0 ~ 7.6 

200.0 ~ 500.

0 
400.0 ~ 1,000.0 156 

Zhao (2003) 9.0 32.4 3.0 70.0 ~ 470.0 400.0 ~ 700.0 Horizontal 73 

Mumm (1954)   

  

  

 

Straight tube 

11.8   

  

  

  

  

  

- 

0.31 ~ 1.38 157.0 ~ 247.

0 

339.0 ~ 1,383.0   

  

  

Vertical 

  

  

  

343 

Sani (1960) 18.3 0.11 ~ 0.21 43.0 ~ 15.7 350.0 ~ 1,035.0 254 

Schrock (1957) 3.0 0.29 ~ 1.27 306.0 ~ 2,09

0.0 

1,245.0 ~ 2,939

.0 

195 

Wright (1961) 18.2 0.10 ~ 0.35 4.74 ~ 157.0 250.0 ~ 1,345.0 907 

Bennett (1976) 20.4 0.2 136.0 ~ 581.

0 

115.0 ~ 981.0 257 

Hardik (2016) 7.5 /  9.3 / 

10.0 

0.12 ~ 0.20 400.0 ~ 1,40

0.0 

230.0 ~ 650.0 Horizontal 56 
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Development of new correlation (1) 

 

 

 

 

 

 

 

 We plotted the heat transfer coefficient ratios * hTP/hl against the convection 

number (Co )and the boiling number (Bo) 

 As Co goes up, heat transfer ratio drops, the heat transfer coefficients ratio 

towards a linear trend 

 Conversely, under low-quality conditions with higher Co, nucleate boiling is 

significant, leading to a proportional increase in heat transfer with Bo 
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hl: single-phase heat transfer coefficient calculated by the 

Dittus-Boelter equation 
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Development of new correlation (2) 

 

 

 

 

 

 

 

 For Fr < 1, the flow behavior in a helically coiled tube may be similar to 

that in an inclined tube  

 The greater impact of gravity causes the liquid film to accumulate on 

the lower side, leading to increased non-uniformity in the 

circumferential wall temperature 

 Despite the increase of Fr,  

the enhancement of the heat transfer  

coefficient is less sensitive  

 However, for Fr > 1, the turbulence  

intensifies significantly promoting  

uniform fluid and wall temperature  

due to the centrifugal force 
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Development of new correlation (3) 

 

 

 

 

 

 

 

 To consider the effect of centrifugal force, we introduced a 

dimensionless number, NCF, which represents the centrifugal force on 

the fluid relative over gravity: 

 

 

 For the liquid phase, the dimensionless number can be expressed as 

follows: 

 

 

 In this study, we used a correlation for the slip ratio proposed by 

Chisholm :  
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Development of new correlation (4) 

 

 

 

 

 

 

 

 As NCF,l increase, the heat transfer coefficient ratio increases showing 

that they are strongly dependent on the centrifugal force 

 When the centrifugal force increases, the secondary flow is enhanced 

 This leads to reducing the non-uniformity of wall temperature 

distribution and, in turn, enhancing the boiling heat transfer 
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Development of new correlation (5) 

 

 

 

 

 

 

 

 We developed a heat transfer correlation for helically coiled tubes by 

modifying the Kandlikar correlation 

 

 All the coefficients for each region were obtained by using a curve-

fitting program*  

 Because the behavior of heat transfer coefficient ratio with NCF,l is 

similar to that of Co, the proposed correlation simplifies the 

convective boiling term by combining the NCF,l term with Co term 

Constant 

0.66 0.97 

-0.99 -0.95 

0.103 0.0998 

3330.9 3427.6 

0.92 0.91 

1.40 0.55 

   3
52

1 , 4 61 0.1
C CCTP

CF l

l

h
C Co N C Bo C

h
   

1Fr  1Fr 

1C
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5C

6C

   52 4

1 325
CC C

TP l l fluid lh C Co Fr h F C Bo h 

*Curve expert professional 

: Kandlikar correlation 
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Assessment of new correlation (1) 

 

 

 

 

 

 

 

 New correlation shows the excellent predictions 

 Notably, the Shah correlation and the Kandlikar correlation, which were 

developed for a straight tube, also show good performance 
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Assessment of new correlation (2) 

 New correlation shows better performance than the Shah correlation in terms of the 

RMSE, MAE, and the percentages within error bands 

 Shah correlation was the best among the existing correlations 

 Quantitatively, the new correlation showed a decreased RMSE of 5.2% compared to that 

of the Shah correlation 

  

New correlation 
Chen  

(1966) 

Gungor & Win

terton (1986) 

Kandlikar (1

990) 

Liu & Winter

ton (1991) 

Shah 

(1976) 

Stenier & Ta

borek 

(1992) 

Kozeki 

(1970) 

Zhao 

(2003) 

Chen  

(2011) 

Kaji 

(1998) 

Niu 

(2018) 

RMSE (-) 0.194 0.287 0.287 0.206 0.357 0.204 0.372 0.287 0.284 0.387 7.193 0.410 

MAE (-) 0.141 0.202 0.217 0.159 0.279 0.158 0.301 0.211 0.254 0.322 2.756 0.336 
Data within ±2

0% error band 

(%) 

75.79 64.68 55.56 67.99 45.11 69.98 38.97 59.87 32.67 34.00 7.79 35.82 

Data within ±3

0% error band 

(%) 

90.88 79.44 74.46 90.22 59.54 89.72 58.54 75.46 62.02 50.25 12.11 52.57 

  

  
New correlation Chen (1966) 

Gungor & Winterton  

(1986) 
Kandlikar (1990) Shah (1976) 

Stenier & Taborek 

(1992) 

Chang (2023) 0.206 (2nd) 0.190 (1st) 0.301 0.231 0.210 0.617 

Hardik (2017) 0.177 (2nd) 0.292 0.199 0.203 0.174 (1st) 0.342 

Owhadi(1968) 0.199 (1st) 0.273 0.327 0.225 0.210 (2nd) 0.312 

Santini (2016) 0.206 (1st) 0.317 0.216 0.218 0.212 (2nd) 0.433 

Xiao (2018) 0.245 (1st) 0.308 0.272 0.258 0.246 (2nd) 0.532 

Xiao (2018) 0.151 (1st) 0.191 0.225 0.152 (2nd) 0.161 0.369 

Zhao (2003) 0.233 (2nd) 0.438 0.362 0.212 (1st) 0.261 0.391 

 2
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h h
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Comparison of the new and existing heat transfer correlations  

RMSE of the new and the existing correlations for each experiment 
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Assessment of new correlation (3) 

  We also performed quantitative assessment results for experimental 

data of the straight tube 

 The proposed correlation showed the best performance among the 

existing correlations 

 Although the new correlation was developed for helically coiled tubes, 

it can be applicable to straight tubes as well 

  
New  

correlation 

Chen  

(1966) 

Gungor & 

Winterton  

(1986) 

Kandlikar  

(1990) 

Shah 

(1976) 

RMSE (-) 0.181 0.229 0.192 0.188 0.183 

MAE (-) 0.370 0.429 0.381 0.377 0.367 

Data within ±30

% error band  

(%) 

92.07 80.7. 90.21 90.89 91.57 
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Comparison of the new and existing flow boiling heat transfer correlations  
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Conclusions 

 

 

 

 

 

 

 

 The study examined the effects of dimensionless numbers 

(convection number, boiling number, and Froude number) on boiling 

heat transfer 

 The influence of centrifugal force on boiling heat transfer in helically 

coiled tubes was confirmed, and a dimensionless centrifugal force 

number (NCF) was introduced 

 A new heat transfer correlation was proposed, which outperformed 

existing correlations in terms of accuracy 

 The new correlation also demonstrated superior performance in 

straight tube boiling heat transfer applications when compared to 

existing correlations 


