Jan Hruškovič, Youngjae Park, DongYoung Lee, Seong-Su Jeon, and Do Hyun Hwang

FNC Technology Co., Ltd. CONTENTS

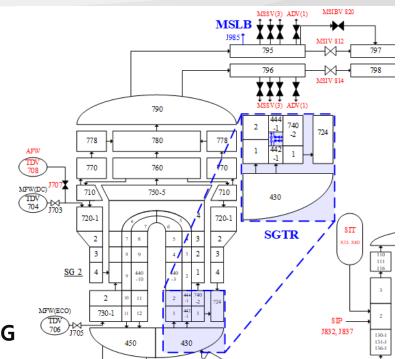
1

2

3

5

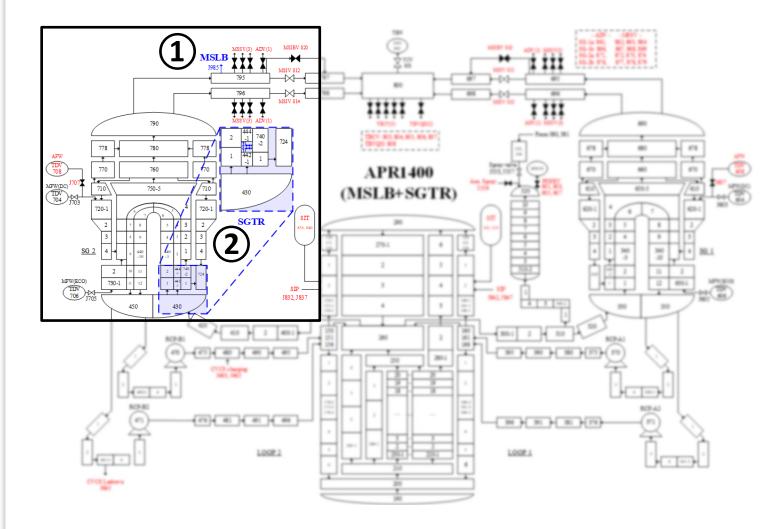
- INTRODUCTION
- METHODOLOGY
 - ACCIDENT SCENARIO AND SEQUENCE OF EVENTS
- 4 ANALYSIS RESULTS
 - CONCLUSION AND FUTURE WORK



INTRODUCTION

What is MSLB-SGTR?

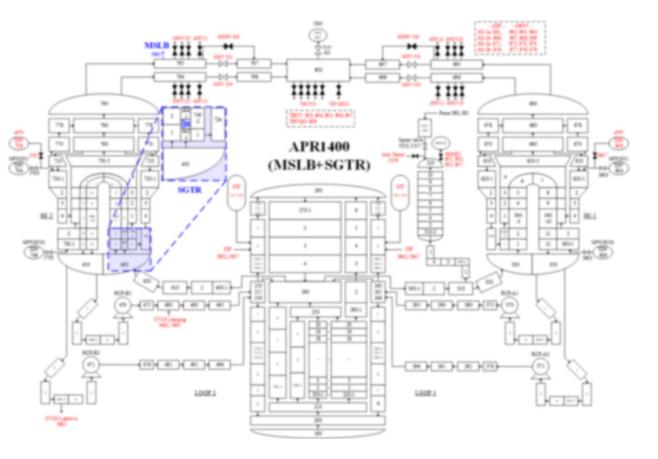
- Main Steam Line Break (MSLB)
 - Guillotine break in the main steam line (MSL)
 - Steam leak out of the system \rightarrow rapid **SG depressurization**
 - Break location is **inside the containment**
 - Steam generator water level decrease \rightarrow dry out
- Steam Generator Tube Rupture (SGTR)
 - Assumed **rupture in a single U-tube** of steam generator
 - **Coolant** and radioactive materials released from **RCS to secondary side of SG**
- Main Steam Line Break induced Steam Generator Tube Rupture
 - Combines MSLB and SGTR occurring together
 - **Multiple-failure scenario** combining two Design Basis Accidents (DBAs)
 - Design Extension Conditions (**DEC-A**) without significant fuel degradation


Research Scope

- Research goal Conduct an accident analysis of Main Steam Line Break induced Steam Generator Tube Rupture (MSLB-SGTR) accident to verify that the safety systems together with appropriate operator actions can successfully mitigate the accident and ensure plant cooldown conditions
- Motivation **research gap**, no previous studies found with focus on the MSLB-SGTR accident analysis
 - Experiment on MSLB-SGTR accident on ATLAS facility (scaled APR1400) published
 - Importance several studies on DEC suggest investigation of MSLB-SGTR scenario
- Target plant Korean **APR1400** plant with pressurized water reactor
- Used code RELAP5/MOD3.3 TH system code
- > Approach Best Estimate analysis with realistic assumptions
 - Full power **nominal conditions**
 - Offsite power is available (no LOOP assumed)

2 METHODOLOGY

APR1400 plant model nodalization and steady-state parameters


Parameter	DCD	Model
Core power level, MWt	3983.0	3983.0
Pressurizer pressure, MPa	15.51	15.51
Pressurizer lever, %	52.8	50.01
Hot leg temperature, °C	323.9	324.6
Cold leg temperature, °C	290.6	291.7
Total RCS mass flow rate, kg/s	21000.0	20994.7
Steam generator pressure, MPa	6.89	6.57
Feed water flow rate per SG, kg/s	1130.57	1130.13
Steam flow rate per SG, kg/s	1130.56	1130.26
Steam generator water level, %	77.0	77.0

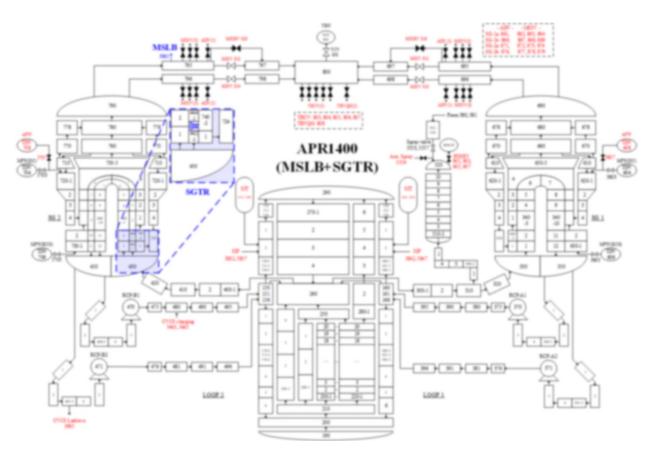
1 Main Steam Line Break

2 SG Tube Rupture

Safety systems and operator actions involved in the accident mitigation

- Auxiliary Feed Water System (AFWS)
 - Operate automatically when SG water level is below 20 % and stop with SG water level above 45 %
 - Deliver feed water to the affected SG and provide cooling to RCS
- > Main Steam Isolation Bypass Valve (MSIBV)
 - Allows steam flow from the unaffected SG to condenser
 - Plant cooldown using the unaffected steam generator
- Safety Injection Pump (SIP) with flow rate control
- Start operation by RCS pressure setpoint (~12.2 MPa for APR1400)
- Flow control after 30 minutes of accident initiation by operator
- > RCP shut down
 - Assumed 1 RCP per loop (total 2) to shut down by operator
- > Pressurizer auxiliary spray
 - Plays a major role in the plant cooldown and RCS depressurization
 - Injection rate ~6.8 kg/s according to DCD of APR1400

Mitigation Strategy


- Supplementation of RCS inventory
 - RCS inventory decreases due to SGTR leakage to the secondary side
 - To ensure RPV water level and prevent core uncovery
 - Water supply using Safety Injection Pumps (SIPs)
 - CVCS (charging/letdown) in operation to maintain PZR level

RCS Cooling

- Decay heat removal and cooling of the reactor core
 - Cooling by primary systems
 - Crucial function of PZR auxiliary spray to reach SCS entry conditions
 - Supported by SIP and RCP operation, manual control by operator
 - Cooling by heat transfer from primary to secondary side
 - Main cooling provided by affected SG via MSL break
 - Cooling by unaffected SG using MSIBV

SG Inventory Maintenance

Feedwater delivery to affected SG by AFWS

3 ACCIDENT SCENARIO AND SEQUENCE OF EVENTS

Main Steam Line Break induced Steam Generator Tube Rupture

(1) Break on the Main Steam Line (28 inch break)

• Double ended rupture on the MSL

(2) Decrease of pressure and water level in affected SG

• Steam leaks through break in MSL and is discharged to containment

(3) Reactor and Turbine trip (MSIV trip, SG isolation)

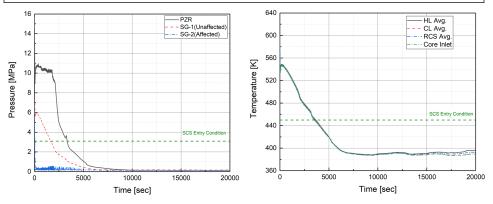
• Decay heat generation, SG isolation and turbine trip (MSIV close)

(4) SGTR occurs when affected SG dries out

- SG dries out and pressure rapidly decreases
- Highest pressure difference between primary and secondary side
- SGTR occurs on hot-leg side upstream of the affected SG

(5) SIP and AFWS operation

- AFWS delivers feed water to the affected SG
- Unaffected SG water level is maintained constant
- RCS inventory maintained by SIP operation


(6) Operator action after 30 minutes assumed

- Stop RCP, turn on PRZ spray, decrease SIP flow rate
- Determine the best strategy for successful plant cooldown

Simulation goal – reach SCS entry conditions

* RCS pressure $\sim\!3.1$ MPa and temperature 176.7 °C / 449.85 K

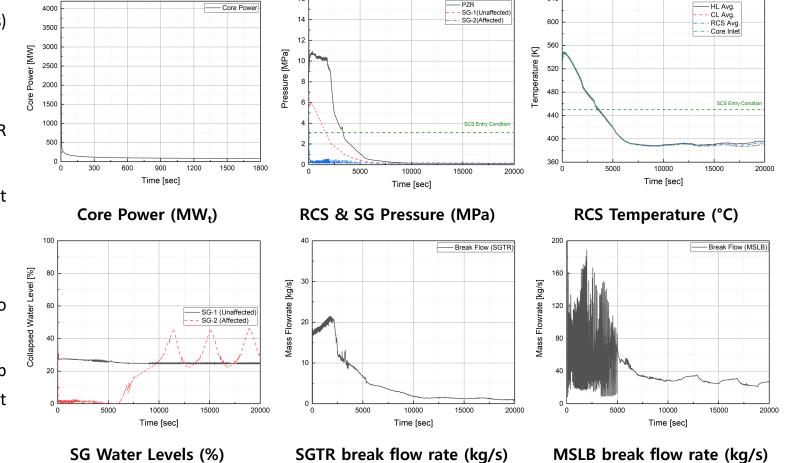
Time	Event
0 s	Break on MSL occurs
1.46 s	Low SG Pressure Setpoint
2.63 s	Reactor Trip Signal
2.83 s	Turbine Trip
10.62 s	Low SG Water Level Setpoint
23.15 s	SIP Setpoint
35.10 s	SGTR occurrence - affected SG dry out (WL < 10 %)
63.16 s	SIP Start operation (40 s delay)
86.94 s	AFWS Start operation in affected SG
1800 s	Two RCPs (one per loop) shut down (operator action)
1800 s	PRZ Spray turned on (operator action)
3550 s	SCS Entry condition reached (T < 449.85 K)

FNC Technology Co., Ltd.

640

Analysis results 1/2

> Core Power


Drops immediately with reactor trip (2.63 s) and follows decay heat curve

RCS Pressure

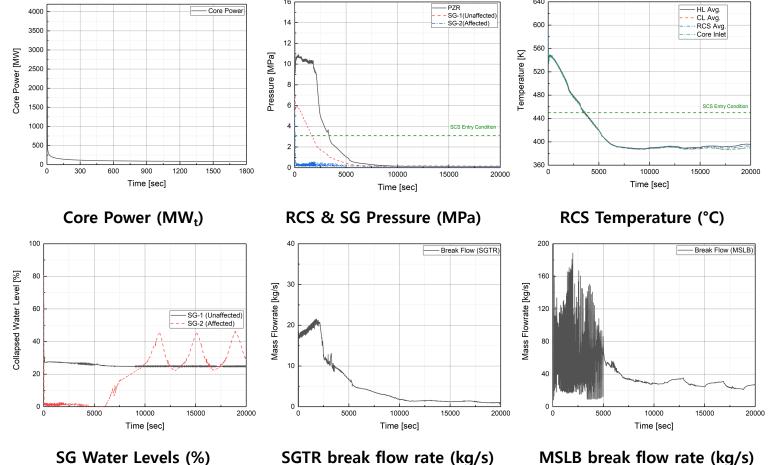
- Initial drop after reactor trip and SGTR occurrence remains around 10-11 MPa
- Decreases significantly with two RCPs shut down (1800 s) as operator action

SG Pressure

- Affected SG rapid depressurization due to MSLB
- Unaffected SG after initial pressure drop with reactor trip decreases with the plant cooldown

Analysis results 2/2

> RCS Temperature


- Gradually decreases with reactor trip
- SCS entry condition (176.7 °C) at 3550 s
- After ~6800 s temperature stabilizes

SG Water levels

- Affected SG inventory is depleted and SG dries out with MSLB occurrence
- After RCS temperature reaches steady value, water level increases due to operation of AFWS
- Unaffected SG water level is constant

Break Flows

- **SGTR** decreases with RCP shut down
- MSLB initially high and oscillations due to constant AFW flow, then with increased SG water level stabilizes

5

CONCLUSION AND FUTURE WORK

Conclusion and future work

- Research scope Simulation of MSLB-SGTR accident following DEC-A safety analysis methodology performed using RELAP5/MOD3.3 system code for Korean APR1400 plant
- Research goal reached successful accident mitigation and plant cooldown have been verified
 - Results of the analysis presented, **SCS entry conditions reached at 3550 s**
 - Main strategy for plant cooldown **AFWS and PZR auxiliary spray operation**
 - Analysis gives insight into **mitigation strategy** and impact of operator actions
- Final conclusion This accident does not lead to core damage when appropriate operator actions are conducted and available safety and control systems are in operation
- > Future work consist of further **sensitivity analysis**
 - Related with **operator actions** (SIP, RCP, ADV, AFWS, PZR auxiliary spray operation)
 - Related with **plant status** (MSLB break size, number of ruptured U-tubes in SG)

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20208540000020)

[1] Korea Hydro & Nuclear Power Co., Ltd, "APR1400 Design Control Document Tier 2: Chapter 15 Transient and Accident Analyses, Revision 3", August 2018.

[2] PARK, Yusun, Byoung Uhn BAE, Jongrok KIM, Jae Bong LEE, Hae Min PARK, Nam Hyun CHOI, Kyoung Ho KANG a Kyung Doo KIM. Experimental Study on the Steam Line Break (SLB) Accident With the Steam Generator Tube Rupture (SGTR). Volume 6A: Thermal-Hydraulics and Safety Analyses. American Society of Mechanical Engineers, 2018.

[3] PARK, Yusun, Byoung Uhn BAE, Jongrok KIM, Jae Bong LEE, Hae Min PARK, Kyoung Ho KANG a Kyung Doo KIM. Experimental Study on the Steam Line Break (SLB) with the Multiple Steam Generator Tube Rupture (MSGTR). Transactions of the Korean Nuclear Society Spring Meeting 2019

[4] Korea Hydro & Nuclear Power Co., Ltd, "APR1400 Design Control Document Tier 2: Chapter 4 Reactor, Revision 3", August 2018.

[5] Korea Hydro & Nuclear Power Co., Ltd, "APR1400 Design Control Document Tier 2: Chapter 10 Steam and Power Conversion System, Revision 3", August 2018.

PHeadquarters

Heungdeok IT Valley Bldg. 32F, 13, Heungdeok 1 ro, Giheung gu , Yongin si , Gyeonggi do, 16954, Korea +82-31-8065-5114

Q Institute of Future Energy Technology

Main | 46, Tapsilro, Giheung-gu, Yongin-si Gyeonggi-do, 17084, Korea +82-31-8005-5618

Q UAE Abu Dhabi Branch

#2335, Sky Tower, Al Reem Island PO Box 5101041, Abu Dhabi, UAE +971-2-406-9719

Q Daejeon Branch

Daeduk Tech Business Center, 1004-2, 593, Daedukdae-ro, Yusung-gu, Daejeon-si, 34112, Korea +82-42-867-5114

New

44, Tapsilro, Giheung-gu, Yongin-si Gyeonggi-do, 17084, Korea +82-31-8005-8236

Q US Maryland Branch

11140 Rockville Pike, Suite 380A, Rockville, MD 20852 USA +1-202-577-5537

THANK YOU!

FNC TECHNOLOGY CO., LTD

911

- HL Avg.

CL Avg.

- RCS Avg.

Core Inlet

SCS Entry Condition

20000

- CL-1A

CL-1B

CL-2A

CL-2B

20000

15000

640

600

560

520

480

440

400

360

10000

8000

6000

4000

2000

-2000

0

Mass Flowrate [kg/s]

0

5000

5000

10000

Time [sec] **RCS Temperatures (°C)**

Temperature [K]

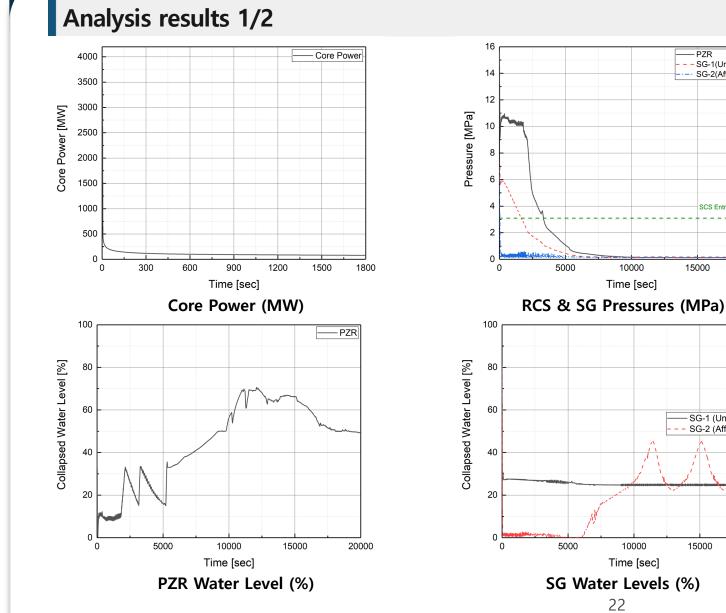
- PZR - SG-1(Unaffected)

SG-2(Affected)

SCS Entry Condition

SG-1 (Unaffected)

SG-2 (Affected)


15000

20000

20000

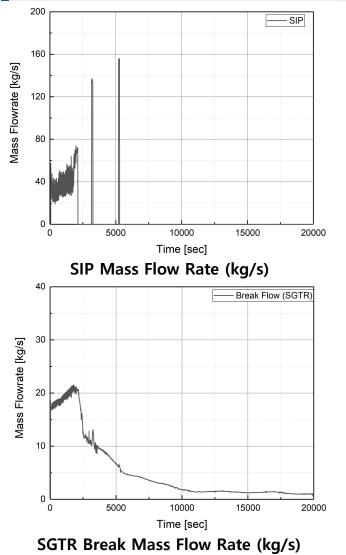
15000

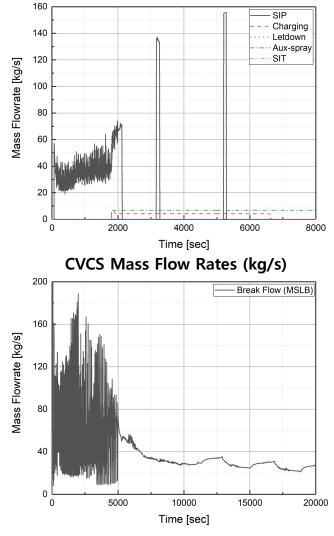
-

15000

10000

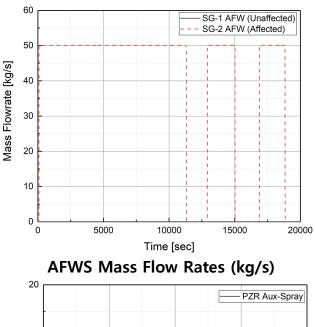
Time [sec]

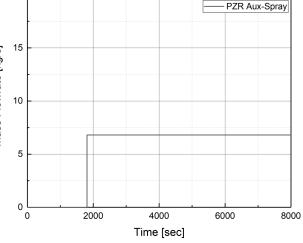



10000

10000

and the second





MSLB Break Mass Flow Rate (kg/s)

PZR Spray Mass Flow Rate (kg/s)

Copyright 2023. FNC Technology Co., Ltd. all rights reserved.