

Proposed Methodology to Estimate the Off-site Emergency Response Convocation Time during Multi-unit Accident Management using an Agent-Based Model

- Presentation for 2023 KNS Autumn Meeting 2023. 10. 26.

Seong Woo Kang, Jinkyun Park (KAERI)
Geon Kim, Gyunyoung Heo (KHU) Sunghyon Jang (Hokudai)

## CONTENTS

■1．Background，Purpose，Objective
凹2．Methodology
凹3．Case Study（Preliminary Result）
凹4．Future Work

## 1. Multi-Unit Accidents Analysis

- The Fukushima Daiichi accident showed that extreme external events beyond design-basis could occur with existing NPPs (nuclear power plants), even if such an event seems highly unlikely to occur
- NPP inter-unit dependencies may inflict core damages to the multiple units if not properly managed
- Simultaneously occurring initiating events in multiple units, proximity of the units, shared resources among the units, common operation practices, etc.
- With many inter-unit dependencies among different units on site (especially in Korea), it is not enough to perform just traditional single-unit PSA to assess the actual risk of the NPPs
- MUPSA (multi-unit PSA) should be performed to provide insights and identifying critical contributors to the NPP site risk
- Mitigative measures should be re-evaluated and improved at a site-level


## 1. Emergency Response Organizations

- With an occurrence of multi-unit accident, MCR (main control room) operators of each NPP unit will declare an emergency based on the situation by following the site emergency plan
- One of very first responses the MCR must make is to call for convocation of appropriate EROs (emergency response organizations) from outside the plant site
- EOF (emergency operations facility), TSC (technical support center), OSC (operational support center)
- In the AMP (Accident Management Program) and REP (Radiological Emergency Plan), aforementioned EROs will be launched after declaring radiological emergency within 1 hour and be functional within 2 hours

An example of organizational structure for radiological emergency response during multi-unit accident for 6-unit plant site


## 1. Consideration of Human Factors

- When developing MUPSA models, it is very important to consider human failure with inter-unit dependencies
- Example: shared workers for transferring, installing, refueling, and performing maintenance for portable equipment (e.g. MACST, Multiple Barrier Accident Coping Strategy)
- To quantify HEPs (human error probabilities) for failure events of these portable equipment during multi-unit accident mitigation, representative values for the convocation time of the workers should first be known
- Outside workers not arriving in time may result in lack of staff for multi-unit accident mitigative measures, which may cause failure or delays in those measures
- Ultimately, the time distribution of external workers arriving, transferring, and installing MACST may be used to quantify HEPs
- Since the convocation times for extreme events cannot be experimented, a simulation model is being developed based on ABM (agent-based model)


## 1. Purpose and Objective

- Purpose:
- To improve site-level safety of the existing NPPs through insights from the MUPSA
- Objective:
- To find reference values and distributions for convocation times during extreme events
- Through simulation using an agent-based model
- To be ultimately used for HEP quantification of multi-unit mitigative measures


## 2. Agent-Based Modeling

- Programmed functionality of autonomous agents to see the events emerge from individual perspective
- Modeling what actions an agent will take based on defined variables and functions
- Agents adhere to its own behavioral rules
- Agents function independently and flexibly
- Agents interact as distinct parts of simulation
- Analyzing macroscopic pattern through individual objects, their behaviors, and their interactions
- Micro specifications generate macro-structure
- Bottom-up


## 2. PRISM-EC

- Developed in Kyung Hee University (Prof. Gyunyoung Heo) based on NetLogo Language
- Integrated development environment (IDE) for agent-based modeling
- Refugees and workers are the agents
- Ultimate goal is to simulate distributions and representative values for convocation time of the workers outside the plant

Factors affecting convocation workers preparation time


> Factors affecting convocation workers movement time

## 2. Modeling and Uncertainty

- Disclaimer: a model is not perfect
- Attempt to represent a system in a form to be used as an explanatory tool
- Any model is at best an approximation (impossible to capture all the subtleties of the system behavior)


## - Two widely accepted ways to divide categories of uncertainties

- Parametric and modeling uncertainties
- Parametric results from uncertainty in the quantification of a model with a specified functional form
- Modeling results from appropriateness of the structure or mathematical form of the model
- Stochastic (aleatory) and subjective (epistemic) uncertainties
- Stochastic results from the fact that the system under consideration can behave in many different ways
- Subjective results from the fact that the existing state of knowledge with respect to the correctness of the assumptions used in an analysis


## 2. Latin Hypercube Sampling (LHS) Method

- Monte Carlo method was developed to address the need for parametric/stochastic uncertainty assessment through simulating distributions
- Random Monte Carlo sampling
- Very easy to use
- Possible clustering of the samples for small number of sample
- Latin hypercube sampling scheme to reduce number of computations
- Range of each variable is divided into non-overlapping intervals on the basis of equal probability to make random sample within each interval
- Ensures that the random sampling is representative of the real variability


uniform distribution)


## 2. Sample Size Determination

- Sample sizes recommended for two-sided nonparametric tolerance limits are shown below, where $p$ is probability and $q$ is confidence level
- Sample size solution found from Conover, W. Practical nonparametric statistics, 2nd ed. (Wiley, New York, 1980)

| $\boldsymbol{q}$ | $\mathbf{p}$ | $\mathbf{0 . 5 0}$ | $\mathbf{0 . 7 5}$ | $\mathbf{0 . 8 0}$ | $\mathbf{0 . 8 5}$ | $\mathbf{0 . 9 0}$ | $\mathbf{0 . 9 5}$ | $\mathbf{0 . 9 7 5}$ | $\mathbf{0 . 9 8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 . 5 0}$ | 3 | 7 | 9 | 11 | 17 | 34 | 67 | 84 | 168 |
| $\mathbf{0 . 7 5}$ | 5 | 10 | 13 | 18 | 27 | 53 | 107 | 134 | 269 |
| $\mathbf{0 . 8 0}$ | 5 | 11 | 14 | 19 | 29 | 59 | 119 | 149 | 299 |
| $\mathbf{0 . 8 5}$ | 6 | 13 | 16 | 22 | 33 | 67 | 134 | 168 | 337 |
| $\mathbf{0 . 9 0}$ | 7 | 15 | 18 | 25 | 38 | 77 | 155 | 194 | 388 |
| $\mathbf{0 . 9 5}$ | 8 | 18 | 22 | 30 | 46 | 93 | 188 | 236 | 473 |
| $\mathbf{0 . 9 7 5}$ | 9 | 20 | 26 | 35 | 54 | 110 | 221 | 277 | 555 |
| $\mathbf{0 . 9 8}$ | 9 | 21 | 27 | 37 | 56 | 115 | 231 | 290 | 581 |
| $\mathbf{0 . 9 9}$ | 11 | 24 | 31 | 42 | 64 | 130 | 263 | 330 | 662 |
| $\mathbf{0 . 9 9 9}$ | 14 | 33 | 42 | 58 | 89 | 181 | 366 | 458 | 920 |

- In the preliminary analysis, 40 samples were chosen for $90 \% / 90 \%$ probability/confidence level
- In consideration of limited time for simulation


## 3. Estimating Off-site Convocation Time

- For estimating convocation time of the off-site emergency response workers, preparation time and movement time should both be considered
- Regarding preparation, the workers would assess the situation, prepare for departure, and confirm safety of the close family members before actually departing to the plant site
- Regarding movement, decrease in speed from road conditions from external events should be considered
- For some of the factors, results from Japanese case study by Prof. Jang of Hokudai is used (to be presented in same session at 11:20am)
- 2.9~7.8\% of workers may not be able to meet the convocation call
- About 50~80\% decrease in movement speed during small-to-medium-sized damage
- If large-sized damage on the road happens, impossible to have any types of transportation for a short term
- Between 20~100 min for preliminary estimation of the preparation time


## 3. Case Study using PRISM-EC and LHS

- External Event: Earthquake similar to 2011 Great Tohoku Earthquake


## - Assumptions:

- No environmental release of radiation
- Preparation time for the workers may range from 20 min to 100 min (Hokudai study)
- From the aftereffects of the earthquake, 2.9~7.8\% of the convocation workers may not be able to respond to the convocation call (Hokudai study)
- Assume small-to-medium-scale damage: 50~80\% decrease in movement speed due to damages to the road and possible blackouts affecting traffic lights (Hokudai study)
- For each simulation set, there is one-thirds chance of being either a day, afternoon, or night
- During the days, afternoons, and nights, it is assumed that the maximum speed of the cars gets multiplied by factors of $0.8,0.7$, and 1.2 , respectively
- All convocation workers are stationed at housing provided by the nuclear company (not realistic, but only for case-study)


## 3. Screenshot of the Simulation



## 3. Case Study Parameters

- Below are some of the parameters used in the simulation of PRISM-EC and LHS

| Parameters | Value |
| :---: | :---: |
| Number of Simulations | 40 |
| Time Step | 10 sec |
| Number of Convocation Workers | 50 |
| Preparation Time | 20~100 min (uniform distribution) |
| Determination of the Final Convocation Worker Arrival | > 92.2~97.1\% (uniform distribution) |
| Speed Decrease from Road Damage | 50~80\% (uniform distribution) |
| Time of the Day | Day, Afternoon, Night (uniform distribution) |
| Nominal Speed Limits | $30 / 50 / 80 \mathrm{~km} / \mathrm{h}$ |

## 3. Case Study Results

- From the case study, the convocations of external workers finished between 106~155 minutes, with an average of 122 minutes and standard deviation of 9.69 min
- $50 \%$ of the workers from outside the plant arrived on site between 73~115 minutes, with an average of 88 minutes and standard deviation of 10.3 min
- Most of the workers arrived on site between 40~140 minutes after the convocation call




## 4. Future Work

- Much more work is expected for the improvement of the model/code
- Need to improve the model parameters (bases on choosing the values)
- Include radiation release model
- More variations in starting locations of the convocation personnel
- Differentiate the personnel (EOF, TSC, OSC, KPS field workers, etc.)
- Maybe model convocation workers moving on foot?
- Code optimization (speed up)
- Validation of the developed ABM model using reference site in Japan
- Simulating distributions and representative values for convocation time of the workers outside the plant for various cases of multi-unit accidents
- Developing time distribution models and finding representative values for the arrived workers to move to SC and transfer the necessary MACST equipment
- Last two bullets to be used in quantification of HEP for MACST activities in the MUPSA models


## THANK YOU

