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1. Introduction 

 
Deep learning methodologies, which utilize artificial 

neural networks, are becoming increasingly prevalent in 
nuclear energy research. This prevalence is often 
attributed to their ability to outperform traditional 
machine learning techniques when ample data is 
available. Within the field of Probabilistic Safety 
Assessment (PSA), deep learning has found applications 
such as scenario optimization, as evidenced by the work 
of Bae et al.[1] Meanwhile, in the simulation domain, 
physics-informed neural networks have been employed 
for surrogate modeling, a technique highlighted in the 
research conducted by Antonello et al.[2] 

As can be seen from recent research, neural network-
based methodologies have been successfully employed 
across various fields. However, they present two main 
challenges. The first challenge is the size and complexity 
of the model, which necessitates significant 
computational resources. This is not only true for the 
training phase but also for deploying the trained neural 
network. The second challenge lies in data dependency. 
In several accident diagnosis studies, such as those by 
Chae et al.[3] and Kim et al.[4], real-world testing in 
nuclear power plants under abnormal or emergency 
conditions is infeasible. Consequently, these studies have 
had to rely on simulated data. If the robustness of the 
artificial neural network is not adequately ensured, 
difficulties arise in applying it to real-world scenarios, 
limiting its applicability to simulated environments. 

To address these issues, we propose a method to both 
reduce the model's size and enhance its robustness by 
employing a distillation methodology. This approach 
aims to provide a more practical and efficient solution for 
leveraging neural networks in complex environments. 

 
2. Knowledge Distillation 

 
Knowledge distillation is a process where a 

lightweight student model is trained using the learning 
process and outcomes of a more complex teacher model 
(Hinton et al. [5]). The teacher model is typically a 
sophisticated and highly accurate neural network, and the 
essence of knowledge distillation lies in guiding the 
student model's learning with newly created information 
from the teacher model.  

Knowledge distillation consists of two types: Feature-
based knowledge distillation, which distills the 

components within an artificial neural network according 
to the type of data being distilled, and Response-based 
knowledge distillation, which utilizes the output results 
of the artificial neural network. Together, these two 
methods are referred to as relation-based distillation. 

 
To illustrate the process of response-based distillation, 

consider designing a neural network to classify dogs, cats, 
and birds. The training data might be organized in Table 
1, and a well-trained network would utilize a softmax 
classifier (Eq. 1) to obtain the results shown in Table 2. 

 
Notations 

Symbol Definition 
i Class 

q  Expected probability 
τ Temperature 
x Input 
y Output 
D Domain, Codomain 

L  Kullback-leibler loss 
S Student model 
T Teacher model 
θ Trainable parameters  

(e.g. weight) 
λ Constant 

L  Cross-entropy loss 
 

Table 1: Example dataset 

 Label 

Input Image Dog Cat Bird 

Dog 1 0 0 

Cat 0 1 0 

Bird 0 0 1 

 

 q =
exp(z )

Σ exp z
 Eq. 1 
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Table 2: Example classification results 

Label 
(Test Data) 

Probability 

Dog Cat Bird 

Dog 0.9 0.07 0.03 

Cat 0.03 0.95 0.02 

Bird 0.006 0.004 0.99 

 
The key insight here is the inference result of the 

Teacher model. For instance, when test data with the 
'Dog' label is processed, the model outputs 'Dog' but also 
generates information indicating that the image is more 
similar to a cat than a bird. Similarly, with 'Cat' labeled 
data, information could be gleaned that the image is 
closer to a dog than a bird. In the Student model, both the 
original hard target (e.g., [1, 0, 0]) and additional soft 
target information created by the Teacher model (e.g., 
[0.9, 0.07, 0.03]) can be used. In practice, Temperature 
concept is utilized to smooth the output (Eq. 2).  

 

 q =
exp

z
𝜏

Σ exp
z
𝜏

 Eq. 2 

 
This enables the creation of a more compact and robust 

model. The process can be further described by the loss 
function in Eq. 3.  

 

 

L

= Σ , ∈ 𝐿 𝑆(𝑥, 𝜃 , 𝜏), 𝑇(𝑥, 𝜃 , 𝜏)

+ 𝜆𝐿 (𝑦 , 𝑦) 
 

Eq. 3 

The benefits of utilizing knowledge distillation 
(response-based distillation) are as follows in terms of 
robustness. 

1. Mitigation of overfitting: In the case of general 
neural networks, the correctness of the answer is 
important, but since Student network mainly evaluates 
the similarity with the distilled information, the 
overfitting problem is reduced. 

  2. Denoising features: the student might learn to 
focus on the most relevant and robust features of the data, 
effectively denoising or discarding less pertinent 
information. 

  3. Condensation of complexity: Response-based 
distillation can allow the student to capture the essence 
of these patterns which shown in the teacher network in 
a more compact form, potentially leading to improved 
robustness. 

 
3. Robust NPP AI Modeling (Experimental Setup) 

 
Three distinct simulators—namely the Compact 

Nuclear Simulator (CNS), PCTRAN Simulator, and 3-
Key Master Simulator—were employed for data 
acquisition. This was done to assess the effectiveness of 

making the model more compact and robust through the 
Knowledge Distillation (KD) technique. 

 
 Compact Nuclear Simulator (CNS): A full-

scope simulator developed for educational, 
training, and accident response purposes. It 
simulates various accident situations within 
a Westing House 3-Loop Pressurized Water 
Reactor, designed by Westinghouse, with 
three circulation loops. 

 
 PCTRAN Simulator: Also a full-scope 

simulator, PCTRAN is designed to perform 
transient analysis by simulating various 
accident situations. It simulates a power 
plant with an electrical output of 1400 MWe 
and two circulation loops. 

 
 3-Key Master Simulator: Like CNS, the 3-

Key Master Simulator is a full-scope 
simulator developed for education and 
training of power plant operators. It also 
assists in establishing accident response 
strategies by simulating various accident 
situations. This simulator also replicates a 
power plant with an electrical output of 
1400 MWe and two circulating loops. 

 
Simulation results were gathered for three kinds of 

accident situations: Loss of Coolant Accident, Steam 
Generator Tube Rupture, and Main Steam Line Break, 
using the different simulators. From the collected data, 
the experiment was designed as illustrated in Fig.1. 

 

 

Fig. 1 Diagnosis w/o KD 
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Initially, the Teacher model was trained to diagnose 

the three aforementioned accidents using data obtained 
from the PCTRAN Simulator. Once sufficiently trained, 
the output probability of the Teacher model was 
calculated for both CNS q , , , q , , ,

q , ,  and 3-Key Master Simulator data 
q , , , q , , , q , , . 

 
The experimental design employing the KD 

methodology is depicted in Fig. 2.  
 

 

Fig. 2 Diagnosis w/ KD 

 
In the experiment, the output probability result of the 

trained Teacher model serves as a soft target to further 
train the Student model. Once the Student model is 
adequately trained, the output probability for the CNS 
(q , , , q , , , q , , ) and 3-Key Master 
Simulator data (q , , , q , , , q , , )  
is calculated in a manner similar to that done for the 
Teacher model. 

 
4. Conclusion and Future Works 

 
In the context of both the CNS and 3-Key Master 

Simulators, parameters such as q , , , 
q , , , q , ,  and q , , , q , , ,  
q , , , as well as diagnosis accuracy of student and 
teacher model, can be instrumental in demonstrating the 
model's robustness to various types of data. Given that 
PCTRAN and the 3-Key Master Simulators have similar 
model structures, we anticipate that  

q , , , q , , , q , ,  and q , , , 

 q , , , q , , , can be employed to assess 
robustness with respect to analogous model types. 
Conversely, when considering PCTRAN and CNS, since 
the cores are distinct, we expect that q , , , 
q , , ,  q , , and 
q , ,  q , , , q , ,  could be utilized to 
gauge the robustness against different type simulators. 

 
In the future, we plan to evaluate the feasibility of 

utilizing the knowledge distillation structure in the 
nuclear field by evaluating the performance for more 
diverse reactor types. 
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