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1. Introduction 

 
Thermoelectric power generation is a technology that 

directly converts heat energy into electrical energy as 

internal charges move in response to a temperature 

difference across thermoelectric elements. By utilizing 

thermoelectric generation (TEG) systems, waste heat lost 

in a nuclear reactor system can be recovered to enhance 

the efficiency and safety features of the I&C system 

during a station blackout. To maximize the power 

generation output of thermoelectric systems, enhancing 

the performance of heat exchangers is crucial [1]. 

Optimization for various thermodynamic characteristics 

is essential in the design of TEG temperature contour. 

TEG designers base their designs on inlet pressure and 

hot side temperature, necessitating a rapid 

comprehension of TEG temperature contour CFD 

analysis results. However, CFD analysis imposes 

significant computational time and effort on designers. 

As a result, Deep Learning (DL) is being applied to 

predict TEG temperature contour. Convolutional Neural 

Networks (CNN) have been employed to parametrize 

TEG temperature contour images. Furthermore, Deep 

Neural Networks (DNN) have been used to predict inlet 

pressure and hot side temperature within the TEG system. 

Therefore, this study implements Generative Adversarial 

Network (GAN)-based pix2pix models [2] for predicting 

TEG temperature contour, leveraging the prompt 

utilization of CFD analysis results in TEG temperature 

contour design. Additionally, DNN-based performance 

prediction models are developed. 

 

2. Methods 

 

This section describes the deep-learning techniques 

used to predict the TEG system temperature contour and 

the data used to train the deep learning.  

 

2.1 Generative Adversarial Network (GAN) 

 

The Generative Adversarial Network (GAN) [3] 

represents a prominent generative model and remains an 

active area of research within the realm of deep learning 

[4]. Comprising a generator and a discriminator, the 

GAN architecture operates through adversarial training, 

yielding data generation. Specifically, the generator, 

denoted as G, fabricates synthetic data from a latent 

random vector, while the discriminator, labeled as D, 

distinguishes genuine data from fabricated counterparts. 

The training process entails honing the generator to craft 

data that is indistinguishable from authentic instances, 

concurrently training the discriminator to effectively 

differentiate between spurious and authentic data. The 

architectural depiction of the GAN can be depicted in Fig 

1. 

 

 
Fig. 1. The generative adversarial network (GAN) 

 

2.2 Conditional Generative Adversarial Network (cGAN) 

 

The conditional Generative Adversarial Network 

(cGAN) [5] stands as a GAN variant devised for the 

purpose of data generation under specific conditions [6]. 

The conditions for the cGAN can manifest in diverse 

formats, including noise vectors, images, and class labels. 

The cGAN's architectural configuration is visually 

depicted in Fig. 2, where the input denoted as z and the 

condition marked as c are fused and subsequently fed 

into the generator G. Furthermore, the input designated 

as x, directed towards the discriminator, is likewise 

harmonized with the condition c. 

 

 
Fig. 2. Conditional generative adversarial network (cGAN). 

 

2.3 Image-to-Image Translation with Conditional 

Adversarial Net (Pix2pix) 

 

Pix2pix presents a versatile solution for addressing 

image-to-image translation challenges by leveraging 

conditional Generative Adversarial Networks (cGANs) 

[7]. The generator architecture in pix2pix adopts the U-

Net framework, which is widely applied in image-to-

image translation tasks. U-Net is a structural design that 

establishes a direct connection between the encoder and 
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decoder layers through a "skip connection," allowing for 

more stable learning compared to a simplistic encoder–

decoder architecture. The discriminator in the setup 

employs a convolutional PatchGAN classifier. This 

classifier assesses images based on patches of defined 

dimensions rather than evaluating the entire image area. 

Consequently, this approach trains the generator to yield 

images that exhibit enhanced realism. 

 

 
Fig. 3. Structure of pix2pix 

 

2.4 Deep Neural Network (DNN) 

 

A deep neural network (DNN) is a statistical learning 

technique that emulates the behavior of human neuron 

cells. It constitutes an artificial neural network with 

numerous hidden layers positioned between the input 

and output layers. Within each layer, nodes receive input 

(x) from nodes in the preceding layer, which are then 

multiplied by corresponding weights (w), added to a bias 

(b), and subsequently processed through an activation 

function to be propagated to the next layer, as depicted 

in Equation (1): 

 

                                yn = f (∑ wixi

i

+ b)                      (1) 

 

Several activation functions exist, yet in this study, 

ReLU and leaky ReLU were employed as the activation 

functions. During training, the back-propagation 

algorithm iteratively refines the weights to minimize the 

loss function. The mean squared error (MSE) serves as 

the chosen loss function. The objective is to minimize the 

defined loss function, which takes the following form: 
 

                                MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2                              (2)
𝑛

1
 

 

For 

 
                           ReLU ∶ f(x) = max(0, 𝑥)                                  (3) 

Leaky ReLU ∶ f(x) = max(0.01, 𝑥) 

 

As a result of training, the output value can converge 

to the actual value according to the optimization of the 

weights. The schematic diagram of the DNN is shown in 

Fig. 4. 

 

 

Fig. 4. Schematic diagram of the deep neural network (DNN). 

 

2.5 Prediction of TEG temperature contour and Inlet 

pressure, Hot side temperature Using Pix2pix and the 

DNN 

 

In this study, pix2pix was utilized for predicting the 

temperature contour of a Thermoelectric Generator 

(TEG). The input comprised 225 configurations of TEG 

temperature contour obtained through Computational 

Fluid Dynamics (CFD), serving as a database for TEG 

temperature contour profiles. Furthermore, the air 

velocity and fin height of the TEG were presented in 

textual format. The flowchart detailing the 

implementation of pix2pix for TEG temperature contour 

prediction is depicted in Fig. 5. 

 

 

Fig. 5. The temperature chart for the use of pix2pix in TEG 

temperature contour prediction 

 

The training objective function was formulated as 

depicted in Equation (4). LcGAN stands as the loss 

function associated with cGAN, designed to optimize the 

generator parameter for minimization and the 

discriminator parameter for maximization. Within 

LcGAN, the loss function corresponds to Equation (5). 

LL1 is optimized towards minimizing the difference 

between the actual value (y) and predicted value G(x). 

LL1 is the same as Equation (6). λ is the hyper-parameter 

that balances the LcGAN and LL1. 

 

         𝐺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑚𝑎𝑥𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + λ𝐿𝐿1(𝐺)        (4) 
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          𝐿𝑐𝐺𝐴𝑁(G, D) =  𝔼𝑥,𝑦[𝑙𝑜𝑔𝐷(𝑥, 𝑦)]

+ 𝔼𝑥,𝑧[−𝐷(𝑥, 𝐺(𝑥, 𝑧))]                    (5) 

 

                 𝐿𝐿1(𝐺)  =  𝔼𝑥,𝑦,𝑧[∥ y − G(x, y) ∥]                 (6) 

 

In this study, two DNN models, TEG inlet pressure 

prediction DNN and hot side temperature prediction 

DNN, were established for predicting the pressure drop 

and heat transfer performance of the TEG system. They 

shared the common inputs of fin pitch, height, curvature 

radius, and velocity, while utilizing inlet pressure and hot 

side temperature as outputs. The data was divided into 

training, validation, and testing sets in a 4:1:1 ratio for 

learning. The TEG inlet pressure prediction DNN 

architecture consisted of an input layer that accepted the 

4 inputs used for training, three hidden layers with 16 

nodes each employing the leaky ReLU activation 

function, and an output layer with 1 node employing the 

linear activation function to predict the TEG inlet 

pressure. The schematic overview of the constructed 

TEG Inlet Pressure Prediction DNN architecture is 

depicted in Fig. 6. 

 

 

Fig. 6. The schematic diagram of the implemented DNN. 

 

2.6 Dataset 

 

Deep Learning (DL)-assisted optimization of fin shape 

design for pressure drop and heat transfer aspects was 

conducted through CFD on a thermoelectric power 

generation system with attached fins. The schematic 

shown in Fig. 7. illustrates a finned thermoelectric power 

generator system. The high-temperature fluid flows 

through the upper part of the module, while the coolant 

flows through the lower part, forming a heat exchanger 

system that supplies heat to the thermoelectric power 

generator system. The heat exchanger has a width of 

288mm and a length of 414mm, with a duct size of 

288*21mm. The thermoelectric power generator system 

consists of a total of nine fin-attached thermoelectric 

modules, as depicted in Fig. 8. Information regarding the 

design parameters of the fins can be found in Fig. 8. and 

Table 1(a). The thermoelectric module has a height of 

10mm and is composed of eight fins, including four 

reference fins and four height-variable fins. Using 

ANSYS CFX, 225 databases were constructed by 

analyzing the heat transfer performance of 225 cases 

(comprising 5 height. 5 radius of curvature, 3 fin pitch, 

and 3 boundary conditions). The domain and boundary 

conditions of the thermoelectric module with attached 

pins used in the analysis are presented in Table 1(b). To 

enhance the reliability of computational analysis results, 

pressure drop in the TEG system was analyzed based on 

grid resolution. The results were obtained using a 

reference grid resolution of approximately 10 million 

cells, with the grid designed to maintain a y+ value of 

less than 5 through an ordered grid arrangement. 

 

 
Fig. 7. Schematics of Thermo Electric Power Generator system 

 

 
Fig. 8. Fin geometric parameter 

 
Table 1. (a) Thermoelectric module pin shape variables 

 

Parameter Value 
Fin Pitch 8, 10, 12 

Height 5, 6, 7, 8, 9, 10 

Radius 15, 17, 20, 25, 30 

Inlet Velocity 10, 15, 20 

 

 

 

 

 

 

Pitch Height

Radius
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Table 1. (b) Analysis boundary conditions 

 

Parameter Value 
Y+ <5 

Turbulence Model SST 

Air Inlet 200℃, 10m/s 

Water Inlet 20℃, 1m/s 

Fin, TEM Hot, TEM Cold Cooper 

TEM Conductor Conductivity 0.1W/mK 

 

3. Results 

 

3.1 The pix2pix implementation details 

 

For the prediction of the temperature contour in the 

TEG system, pix2pix utilized a 512x512 image that 

incorporated velocity and height parameters into the fin 

layout of the thermoelectric power generation module. 

This image served as the input. Additionally, actual 

images of the temperature contour in the hot side, 

obtained through CFD analysis, were employed as the 

corresponding real images for discrimination. The input 

used for training was consistent with Fig. 8. The dataset 

was divided into training, validation, and testing sets in a 

4:1:1 ratio for learning. The optimization function 

employed was Adam, with a learning rate of 0.00002. 

Training was conducted for 250 epochs using a batch size 

of 4. The loss functions employed were L1 loss and GAN 

loss. Following training, the predicted temperature 

contour results for the TEG system are depicted in Fig.  

9. 

 

 
Fig. 8. TEG system hot side temperature contour prediction 

pix2pix input data 

 

 
Fig. 9. TEG system hot side temperature contour prediction 

using pix2pix 

 

3.2 The DNN implementation details 

 

For the TEG inlet pressure prediction DNN training, 

the optimization function used was Adam, with a 

learning rate of 0.001. The training process was 

conducted over 1000 epochs with a batch size of 1. The 

loss function employed was the Mean Squared Error 

(MSE). After training the TEG inlet pressure prediction 

DNN, the Mean Absolute Percentage Error (MAPE) of 

the predicted results compared to the original data was 

3.042%. 

For the TEG hot side temperature prediction DNN 

training, the optimization function utilized was Adam, 

with a learning rate of 0.001. The training process was 

executed over 200 epochs with a batch size of 1. The loss 

function used was again the Mean Squared Error (MSE). 

After training the TEG fine part temperature prediction 

DNN, the Mean Absolute Percentage Error (MAPE) of 

the predicted results compared to the original data was 

1.0562% 

 

4. Conclusions 

 

In this study, a dataset comprising 225 data points, 

including TEG system fin pitch, height, curvature radius, 

and velocity, was constructed. Using this dataset, 

pix2pix-based TEG temperature contour prediction 

model and DNN-based TEG performance prediction 

model were implemented. The results of model training 

confirmed the accurate prediction of TEG temperature 

contour, inlet pressure, and hot side temperature. In the 

future, we plan to further advance the deep learning 

models to predict temperature distributions and pressure 

fields based on the geometry of SFR (Sodium-cooled 

Fast Reactor) nuclear fuel assemblies. Additionally, we 

aim to utilize these models to predict Nusselt numbers 

and friction coefficients. Currently, we are in the process 

of constructing a CFD database using Thermal-
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Hydraulic experimental data from various fuel assembly 

of SFR such as ORNL 19Pin, WARD 61Pin, and 

Toshiba 37Pin and so on. 
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