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1. Introduction 

 

For nuclear thermal-hydraulic systems, free 

convection phenomena have been widely used to design 

circulation systems. In buoyancy-driven flows, if the 

fluid is colder at the top and warmer at the bottom in an 

enclosed domain, such as Rayleigh-Bénard convection, 

there exists potential energy due to the density difference. 

Turbulent natural convection is the process through 

which this potential energy is converted into turbulent 

kinetic energy. Because turbulence mixes fluids so 

effectively, turbulent heat transfer is much more efficient 

than typical conductive heat transfer. 

To predict turbulent flows, Reynolds-averaged 

Navier-Stokes (RANS) models are commonly employed 

in commercial computational fluid dynamics (CFD) 

software for a variety of engineering applications. 

During the process of Reynolds averaging, the governing 

equations are dealt with through time-averaging, with 

decomposing velocity and temperature fields into their 

time-averaged and fluctuating components. 

Subsequently, the effects of turbulence are represented 

as the unknowns obtained through Reynolds-averaging 

the non-linear terms, which necessitates modeling. 

In the RANS approach, turbulent natural convection is 

identified as the production of turbulent kinetic energy 

due to buoyancy, along with its effects on the 

anisotropies of turbulent heat flux and the Reynolds 

stress tensor. Previous RANS models proposed 

incorporating these buoyant effects on turbulence 

modeling, and this was the subject of active studies from 

the 1980s through the 2000s. Hanjalić's review [1] 

provides an excellent summary of the physical 

assumptions about buoyancy-extended RANS models 

and their successes. Other important references to 

consider are Hanjalić's book [2] and the review papers by 

Choi et al. [3] and Durbin [4]. 

Buoyancy-RANS models developed to date have been 

optimized through a physical analysis based on the 

transport equations of the second moment for fluctuating 

velocity and temperature. This optimization involves 

budget analysis using data from direct numerical 

simulations and term-by-term fitting. Subsequently, the 

conventional buoyancy-RANS models have primarily 

been validated for vertical natural convection and similar 

problems. These models are known to offer more 

accurate results when compared to simple eddy-

diffusivity models that do not account for buoyancy [1]. 

While Reynolds averaging, a methodology for fluids 

that simplifies through time-averaging (or ensemble-

averaging), is a highly effective tool for predicting 

turbulent flows at a low computational cost in the 

industrial context, the loss of flow information resulting 

from simplification poses an inherent limitation of the 

RANS modeling technique. Shedding light on this issue, 

Spalart’s review [5] offers a comprehensive analysis of 

the physical assumptions and their fundamental 

limitations of the RANS model. However, Spalart's 

paper did not address issues related to buoyancy-driven 

flows, as it primarily focused on more general flows, 

such as shear or wall-bounded flows. 

Existing buoyancy-RANS models have well known to 

be often unstable, and reliable results are not guaranteed 

unless the model constants are optimized and tailored to 

the specific problem. To delve into the specifics of this 

issue, the present paper adopts a perspective similar to 

Spalart's review, discussing the fundamental limitations 

of buoyancy-related RANS modeling that have been 

rarely considered. Here, the issues that have already been 

mentioned in Spalart's review, or that are not directly 

related to buoyancy-driven flows, are excluded from the 

current discussion. 

 

 

Fig. 1. Schematic of two types of natural convection: Rayleigh-

Bénard convection (left) and vertical natural convection (right). 

In a historical context, RANS models for buoyancy 

were mainly developed until the 2000s. On the other 

hand, as summarized by Ahlers et al. [6], the current 

understanding of the turbulent natural convection 

phenomenon has greatly enhanced due to a wealth of 

reliable data resulting from advancements in 

experimental techniques and computational power, as 

well as a deeper theoretical understanding. Accordingly, 

this paper utilizes recent knowledge about turbulent 
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thermal convection to comprehensively discuss the 

fundamental principles in RANS modeling. 

 

 

2. Paradox of the 'One-Point Model' for Buoyant-

Driven Flows 

 

2.1 Nature of Reynolds Stresses and Turbulent Heat Flux 

in Free Convection 

 

Spalart [5] pointed out that while the concept of 

Reynolds stress tensor is clear in its definition, its 

corresponding physical phenomena are not consistent. 

Even for the same value of Reynolds stress, the shape of 

the coherent structure and its derived physical behaviors 

can be different. A strong example cited in Spalart's 

review is cylinder wakes, where the laminar lumps and 

turbulent regions of vortex shedding are all simplified to 

a single value in averaging. 

To focus on buoyancy-driven flow, Rayleigh-Bénard 

convection will now be discussed as a basic natural 

convection problem. This problem involves a flow 

between two horizontal plates separated by a distance L, 

with gravity applied in the vertical direction. The 

boundary condition for the two walls is isothermal, with 

the top being cold and the bottom being warm, 

maintaining a temperature difference Δ. This results in a 

convection cell circulating throughout the domain at a 

speed of U and a length similar to L. Then, the turbulent 

kinetic energy (the trace of Reynolds stress tensor) is 

found to be proportional to U2. The dissipation rate of 

turbulent kinetic energy (corresponding to ε in the k-ε 

model) is cascaded by U3/L, where U/L represents the 

rotation frequency of the convective cell [6]. 

The steady-state heat flux between the two horizontal 

plates is consistent across all regions, and its value is 

much larger than the conductive heat transfer in the case 

of turbulent flow. This turbulent heat transfer can be 

estimated by the heat balance equation near the 

isothermal wall as α(Δ/λθ), where α and λθ denote the 

thermal diffusivity and thermal boundary layer thickness, 

respectively. The thermal boundary layer thickness of 

Rayleigh-Bénard convection is influenced by the 

circulation of a large-scale convection cell with a 

velocity U and a length L. Both experimentally and 

theoretically, it has been established that the thermal 

boundary layer thickness is linked to the length (L) and 

velocity scale (U) of the large-scale convective cell, 

following a relationship similar to a Blasius-type 

boundary layer flow, as λθ~(L/U)1/2
 [6]. Consequently, 

the turbulent heat transfer in Rayleigh-Bénard 

convection is also governed by the large-scale 

convection cells, which are unique to this flow. 

In summary, the characteristics of Reynolds stress and 

turbulent heat flux in Rayleigh-Bénard convection are 

believed to be difficult to generalize to other flows. 

These observations provide a fundamental explanation 

for the limited applicability of the conventional 

convection model. Even if a certain model works 

effectively for heat flow problems where buoyancy is not 

considered, it may not be guaranteed to work for natural 

convection problems. 

 

2.2 Severe Limitations of Locality-Based Models in 

Predicting Natural Convection 

 

Spalart [5] noted that the algebraic turbulence models 

developed in the 1960s to 1970s were non-local, while 

many of the currently used models, such as the k-ε model, 

are local. The locality of models implies that the 

algebraic or modeled transport equations being solved 

are represented using only local information, such as 

turbulent kinetic energy (k), velocity, temperature, 

dissipation rate (ε), and their time- or space-derivatives. 

Conversely, non-local information encompasses 

parameters like the displacement thickness of the 

boundary layer, wall distances, and length characteristics 

of the geometry, reflecting the unique aspects of each 

problem. 

The non-local model is still employed in the XFOIL 

code, designed for 2D airfoil problems. This model 

utilizes and generates information specific to the 

boundary layer characteristics of that airfoil problems. 

On the other hand, local models like the k-ε model, 

widely utilized in commercial CFD codes, use local 

information. The advantage of using local models lies in 

their adaptability to a broad range of problems, including 

those with intricate geometries, using a single model. 

Underlying the idea that locally-based modeling can 

lead to success is the belief that the local physical 

attributes of turbulence, such as turbulent kinetic energy 

'k' and its dissipation rate 'ε', diffuse and dissipate 

consistently across various flows. However, Spalart 

pointed out that the actual behavior of local models relies 

on empirical properties and more closely resembles the 

successful "mimicking" of representative turbulent flows. 

To further illustrate Spalart's point, let's examine the k-ε 

model: The transfer equation for the ε equation isn't 

derived from statistical turbulence physics governing 

each term, but rather resembles a 'mimicry' of the typical 

flows to which turbulence models are often applied. In 

other words, as described in Pope's book [7], the modeled 

ε-equation is best understood as being entirely 'empirical'; 

for any given ε-equation, the model's justification arises 

from describing how it behaves in scenarios such as 

decaying turbulence, homogeneous shear flow, log-law 

regions, and free-stream edges. 

In contrast to the 'empirical' modeling approach is the 

'systematic' methodology, which formulates transport 

equations for the ε-equation and models diffusion terms, 

including respective triple correlations. However, this 

approach introduces additional unknowns for more 

complex higher-order moments, and accurately 

modeling the higher-order terms from which these 

moments stem is unlikely. (In mathematical terms, a 

moment signifies a time-averaged value multiplied by 

various powers of velocity or temperature fluctuation. 

For instance, turbulent heat flux represents a second 
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moment of velocity and temperature fluctuations' 

product.) This is because the essence of turbulent 

phenomena lies in the behavior of coherent structures 

within three-dimensional flows; even if statistical 

properties of lower-order moments remain consistent, 

higher-order moments may differ. Solving governing 

equations for an nth-order moment introduces an 

unknown for an (n+1)th-order moment, perpetuating an 

infinite chain. The extent to which a model should 

emulate statistical properties of nth-order moments to 

capture the essence of turbulent flow also depends on the 

specific problem. Adopting additional models could 

enable the model to evolve by imposing more 

"empirical" fits to flow phenomena on the added degrees 

of freedom, but this undermines the advantage of RANS 

in efficiently predicting turbulence within time-averaged 

flows at a small computational cost. The straightforward 

and accurate approach to predicting coherent structure 

behavior involves directly 'resolving' it, as seen in large-

eddy simulations or direct numerical simulations. 

Attempting to imitate these flow structures using indirect 

statistical behavior for higher-order moments using 

RANS is considered inefficient. 

Most of the buoyancy-extended RANS models 

currently employed are also local, as evidenced by the 

title of Hanjalić's review paper [1], “One-point closure 

models for buoyancy-driven turbulent flows,” where 

'one-point' signifies the locality of a model. For instance, 

in most commercial software, buoyancy turbulence 

models are usually integrated by incorporating a 

buoyancy term into popular models like k-ε or k-ω model. 

However, the validity of assuming locality for 

buoyancy-driven flows has been rarely discussed. As 

elucidated earlier, the reliability of the conventional k-ε 

model is established by its capability to replicate 

representative fluid problems, even while assuming 

locality. To verify the suitability of applying locality to 

buoyancy-related issues, it is essential to evaluate 

whether the assumption of locality can convincingly 

replicate typical buoyancy problems. 

 

Now, as a counterexample to the modeling principle 

of locality in buoyancy-driven flows, homogeneous 

Rayleigh-Bénard convection will be introduced. In this 

scenario, periodic boundary conditions are imposed on 

the velocity in all three dimensions of the flow. In 

contrast, the temperature boundary condition is 

established to create a temperature difference (denoted as 

Δ) in a vertical plane located at a distance of L from the 

direction of gravity. Due to the homogeneous 

characteristic of the flow, various flow parameters such 

as turbulent kinetic energy, turbulent heat transfer, 

dissipation rate, and temperature gradient remain 

consistent across the entire domain. For the input 

parameters, the Rayleigh number (Ra) and the Prandtl 

number (Pr) are defined as follows: 

Ra =
𝑔𝛽Δ𝐿3

𝛼𝜈
   and    Pr =

𝜈

𝛼
. 

Here, g, β, α, and ν represent gravitational 
acceleration, the expansion ratio of the Boussinesq 
approximation, thermal diffusivity, and kinematic 
viscosity, respectively. The output parameter, known 
as the Nusselt number (Nu), is defined by the 
equation: 

Nu =
𝑇′𝑢𝑧′̅̅ ̅̅ ̅̅ ̅ − 𝛼(𝜕𝑇/𝜕𝑧)

𝛼Δ/𝐿
. 

Here, 𝑇′𝑢𝑧′̅̅ ̅̅ ̅̅ ̅  denotes the turbulent heat flux in the 
gravitational direction (z-direction). The overline, 

( )̅̅ ̅̅ ̅ , denotes the Reynolds-averaging. In summary, 
Nu is a function of Ra and Pr [6]. 

In the context of homogeneous Rayleigh-Bénard 

convection, the dependence of Nu on Ra and Pr has been 

measured using the scaling relation: 

Nu ∼ Ra1/2Pr1/2.  
This scaling relation implies that the flow exists within 

the fully turbulent regime, meaning that its turbulent heat 

flux is no longer influenced by kinematic viscosity and 

thermal diffusivity [6]. By substituting the definitions of 

dimensionless numbers into the scaling relation when Nu 

is much larger than one, the turbulent heat flux can be 

expressed as: 

𝑇′𝑢𝑧′̅̅ ̅̅ ̅̅ ̅ = 𝑔
1
2𝛽

1
2(Δ/𝐿)

3
2𝐿2. 

Here, g, β, and (Δ/L) (representing the homogeneous 

temperature gradient) correspond to local information 

that can be utilized in ordinary local models. However, L 

represents a non-local value signifying the total distance 

between the two horizontal periodic isothermal walls. It 

is evident that a local model inherently cannot accurately 

predict the turbulent heat flux, 𝑇′𝑢𝑧′̅̅ ̅̅ ̅̅ ̅, in the context of 

homogeneous Rayleigh-Bénard convection without 

considering the non-local variable L. 

It is widely recognized that the time-averaging 

assumption of RANS modeling can result in a significant 

loss of turbulent flow information. Conversely, the fact 

that the principle of locality can also lead to substantial 

information loss is frequently overlooked, largely due to 

the consistent success of the local models (e.g. k-ε model) 

in numerous problems. However, the counterexample of 

homogeneous Rayleigh-Bénard convection serves as a 

reminder that the locality assumption inherent in 

modeling can render it incapable of providing a 

comprehensive prediction for natural convective flow. 

 

 

3. Limitations in Predicting Buoyancy-Driven Flows 

 

In this section, significant limitations of the conventional 

models are introduced, which can lead to a substantial 

loss of predictability when applying the model to 

arbitrary buoyancy-driven flows. These limitations are 

connected to the fundamental paradoxes outlined in 

Section 2. 
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3.1 Rayleigh-Bénard Convection: Predictable Only with 

Unstable RANS 

 

In the review paper by Hanjalić [1], it was emphasized 

that none of the currently employed RANS models can 

accurately predict the steady-state turbulent heat transfer 

of Rayleigh-Bénard Convection. As an alternative 

approach, Hanjalić suggested utilizing unsteady RANS 

(URANS). Similarly, the review paper by Choi et al. also 

employed URANS for Rayleigh-Bénard Convection. 

However, there is insufficient theoretical grounding to 

ascertain the validity of URANS. 

The process of modeling time-dependent flow is often 

understood in terms of the turbulent energy spectrum. In 

turbulent flows, it is universally observed that a large 

eddy breaks down into smaller-scale eddies, and these 

smaller eddies tend to exhibit more isotropic behavior. 

This phenomenon is referred to as an energy cascade, 

representing the transfer of energy from the large-scale 

motions to the smaller scales. Within the inertial 

subrange of turbulence scales, the rate of energy transfer 

equals the dissipation rate of turbulent energy. The basic 

principle of large-eddy simulation (LES) is applying a 

spatial filter within the inertial subrange and modeling 

the sub-filter turbulent effects based on the universality 

of the energy cascade. 

In the energy spectrum for the turbulent kinetic energy 

of Rayleigh-Bénard convection, a typical buoyancy-

driven flow, the inertial subrange is equally observed. 

The effect of buoyancy on turbulence, known as the 

Bolgiano-Obukhov scaling, is observed to be limited at 

length scales longer than the inertial subrange [8]. These 

observations seem to provide theoretical support that 

LES, which models the sub-filter effects in the inertial 

subrange, can still be valid in buoyancy-driven flows. On 

the other hand, in the case of URANS, such a theoretical 

justification becomes notably challenging. 

 

 

3.2 Lack of Justification for ε-Equation (or ω-Equation) 

in Two-Equation Models for Buoyancy-Driven Flows 

 

“While the buoyancy effects on the generation of 

turbulent kinetic energy are relatively well understood, 

the effect on its dissipation rate is less clear.” This 

description is a direct reference from the ANSYS Fluent 

theoretical manual [9], where the buoyancy extension 

term for the k-ε model is elaborated. 

First of all, the transport equation for turbulent kinetic 

energy (k) can be precisely derived from the Reynolds-

averaged governing equations, wherein two types of 

production terms for turbulent kinetic energy are 

identified: those arising from the velocity gradient and 

those due to buoyancy. In the absence of buoyancy, the 

'production term' for the ε-epsilon equation is modeled as 

the turbulence production term divided by the turbulence 

timescale (τ=k/ε). Currently, most used models handle 

the turbulence production term due to buoyancy and the 

turbulence generation term due to velocity gradient in the 

ε-equation in the same manner. 

In Section 2.2, the empirical understanding of the ε-

equation has been demonstrated. However, this empirical 

exploration of the buoyancy problem has been seldom 

studied, despite the completely distinct physical 

mechanisms behind turbulence production caused by 

buoyancy and velocity gradient.  

For instance, in the conventional k-ε model, k- and ε -

equation are given by [1,2]: 

𝐷𝑘

𝐷𝑡
= [𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑈𝑖

𝜕𝑥𝑗

] + [−𝛽𝑔𝑖𝑇
′𝑢𝑖

′̅̅ ̅̅ ̅̅ ] + (𝜈 +
𝜈𝑡

𝜎𝑘

) ∇2𝑘, 

𝐷𝜀

𝐷𝑡
= 𝐶1

𝜀

𝑘
[𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑈𝑖

𝜕𝑥𝑗

] + Cg

𝜀

𝑘
[−𝛽𝑔𝑖𝑇

′𝑢𝑖
′̅̅ ̅̅ ̅̅ ] − 𝐶2

𝜀2

𝑘

+ (𝜈 +
𝜈𝑡

𝜎𝜀

) ∇2𝜀. 

Here, the terms enclosed in the first and second square 

brackets signify the turbulent kinetic energy productions 

due to velocity gradients and buoyancy, respectively.  

It is known that the suitable value of  Cg  differs 

depending on the type of flow. Rodi [10] pointed out that 

Cg is close to 1 in vertical natural convection and close 

to 0 in a horizontal boundary layer. In this context, 

Henkes et al. [11] proposed the damping function Cg =

tanh |𝑣/𝑢| , where v and u represent the mean flow 

velocity parallel to the gravitational vector and the mean 

flow velocity perpendicular to the gravitational vector, 

respectively. However, it is obvious that this model can 

not account for situations where the mean flow is zero. 

Furthermore, the suitable values of Cg  reported in the 

literature are all problem-specific. Even for the same 

geometry, consistent results are not guaranteed when the 

Rayleigh or Prandtl number changes. 

 

 

3.3 Lack of Guaranteed Rayleigh-Prandtl Number 

Scaling for Predicted RANS Results 

 

For both Rayleigh-Bénard and vertical natural 

convection, two dimensionless numbers—the Rayleigh 

number (Ra) and the Prandtl number (Pr)—determine the 

flow characteristics of the problem. Additionally, to 

differentiate between the natural and forced convection 

regimes, the Richardson number (Ri) is defined to 

express the ratio of buoyancy and the rate of shear. 

RANS models developed for solving buoyancy-driven 

flows before the 2000s were primarily validated to 

ensure accurate fitting of heat transfer and velocity 

profiles in specific vertical natural convection problems. 

This process involved computing correct budget 

equations based on direct numerical simulation data for 

a given flow and then verifying the a priori accuracy of 

each model term. 

However, a RANS model is a complex system of 

interconnected nonlinear models. Consequently, the 

modeling approach means that errors in any of the 

turbulence variables can lead to overall incorrect results. 

For example, no matter how accurate the algebraic model 
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for turbulent heat transfer and Reynolds stress is, if the 

epsilon distribution derived from the epsilon equation is 

unrealistic, then Reynolds stress and turbulent heat 

transfer, which include the turbulent component of 

epsilon, will also produce inaccurate results. From this 

perspective, adding intricate functions to the sub-model 

to match a detailed heat transfer profile and verifying it 

with an accurate a priori test doesn't significantly impact 

the model's overall accuracy when applied to arbitrary 

flows. 

Before delving into the detailed distribution of heat 

transfer, the first thing to consider is how the average 

turbulent heat transfer varies for a given boundary 

condition. Due to the scarcity of available experimental 

data and the complexity of the model, previous RANS 

models for buoyancy-driven flows have rarely been 

validated how the Nusselt number changes across a wide 

range of Ra-Pr-Ri parameters. Before attempting to 

predict detailed turbulence variable profiles, it is 

believed that further dimensional analysis is required to 

understand how average turbulent heat transfer varies 

over parameter ranges. 

 

 

4. New Modification for the ε-Equation Based on 

Rayleigh-Prandtl-Number Scaling of Thermal 

Convection 

 

The content of this section is being prepared for 

publication in the Journal of Fluid Mechanics under the 

title "A Reynolds-averaged Navier–Stokes Closure 

Model Based on Rayleigh–Prandtl-Number Scaling of 

Natural Convection," and the same content will be 

presented at the American Physical Society's 76th Annual 

Meeting of the Division of Fluid Dynamics. 

 
3.1 Rayleigh-Prandtl-Number Scaling Theory of 

Thermal Convection 

 

A fundamental contradiction in RANS model research 

is that as a model is enhanced to encompass new flow 

phenomena, its complexity may increase while its 

generality decreases. This is why many of the RANS 

models still in use today were developed in the 1980s and 

1990s. 

So, are there no fresh ideas that can significantly 

enhance current models without sacrificing their 

'simplicity'? If we broaden our horizons beyond RANS 

modeling research, numerous experimental and 

theoretical advancements have taken place in natural 

convective turbulence from the 2000s to the present. One 

of these is the scaling theory in thermal convection by 

Grossmann and Lohse, highlighted in the review paper 

by Ahlers et al. [6]. This theory describes the variation of 

scaling laws of Nusselt and Reynolds numbers across a 

wide Ra and Pr parameter space of Rayleigh-Bénard 

convection.  
The Ra-Pr scaling theory has successfully described 

the power-law tendency of Nu~RabPrc, which depends 

on the parameter range in all phase spaces for Ra and Pr 

numbers of Rayleigh-Bennard convection. In the Ra-Pr 

scaling theory, eight theoretical scale-regimes are 

distinguished, depending on whether thermal and kinetic 

dissipation rates dominate in the boundary or bulk 

regions, as well as whether the thermal or kinetic 

boundary layer is thick. For example, assuming that 

thermal and kinetic dissipation rates are dominant in the 

bulk region and that the kinetic boundary layer thickness 

is significant, a theoretical power law of Nu~Ra1/2Pr1/2 

can be estimated.  

Furthermore, the Ra-Pr scaling theory has been 

applied to understand the overall power law of Ra-Pr 

number scaling for various other thermal convection 

flows, such as vertical natural convection, volumetrically 

heated convection, homogeneous Rayleigh-Bénard 

convection, and turbulent electroconvection.  

These theoretical studies are appealing because they 

explain a wide range of experimental data using a simple 

combination of scaling laws. The fact that a simpler 

scaling theory, compared to the RANS model, can 

effectively predict natural convective heat transfer trends 

gives us hope that proposing new models based on this 

theoretical knowledge might be possible. 

 

 

3.2 Analysis of the Conventional Two-Equation Model 

Based on Dynamical Systems Theory 

 

New modeling work begins with a detailed analysis of 

how conventional k-ε models specifically predict 

turbulent heat transfer in Rayleigh-Bénard convection. In 

the present analysis based on the dynamical systems 

theory, it is found that conventional buoyancy-RANS 

models incorrectly predict turbulent heat transfer and 

turbulent heat fluxes to grow infinitely and continuously, 

rather than converging to a finite steady-state value, for 

Rayleigh number conditions above a certain threshold in 

Rayleigh-Bénard convection. Through the present 

analysis, it is found that because conventional models 

treat the buoyancy term in the ε-equation the same way 

as the mechanical term, they incorrectly predict turbulent 

heat transfer between two horizontal plates with a 

constant temperature difference to grow exponentially 

over time. 

The reason for this incorrect prediction is due to the 

locality of the model mentioned in Section 2.2. If a 

conventional model is not provided with the length 

information (L) of a large-scale convection cell in natural 

convection, it cannot predict a finite specific value of 

heat transfer. In other words, the output of the model 

system cannot converge to a finite specific non-zero 

value. 

In summary, conventional models can inaccurately 

predict the turbulent heat flux to increase infinitely over 

time under high Ra conditions in Rayleigh-Bénard 

convection. This suggests that conventional models are 

also at risk of producing incorrect results in various 
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natural convection problems involving significant 

buoyancy-induced turbulent kinetic energy generation. 

 

 

3.3 Modification for the ε-Equation 

 

The theoretical studies in various natural convection 

problems, to which the Ra-Pr scaling theory has been 

applied as described in Section 3.1, all employ a 

combination of the same scaling laws to comprehend the 

heat transfer phenomenon. 

To apply this universality to the RANS model for 

natural convective flows, a new model is devised by 

incorporating the length scale, L, of the large-scale 

coherent flow that might exist in each problem. The 

objective of this modeling is to replicate the power law 

of natural convection as predicted by the Ra-Pr scaling 

theory.  

As mentioned in Section 3.2., the conventional ε-

equation is given by: 

𝐷𝜀

𝐷𝑡
= 𝐶1

𝜀

𝑘
[𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑈𝑖

𝜕𝑥𝑗

] + Cg

𝜀

𝑘
[−𝛽𝑔𝑖𝑇

′𝑢𝑖
′̅̅ ̅̅ ̅̅ ] − 𝐶2

𝜀2

𝑘

+ (𝜈 +
𝜈𝑡

𝜎𝜀

) ∇2𝜀. 

The new model modifies only one term associated 

with buoyancy in the ε-equation: 

𝐷𝜀

𝐷𝑡
= 𝐶1

𝜀

𝑘
[𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑈𝑖

𝜕𝑥𝑗

] + Cg
′ 𝜀𝛾1 (

𝜀

𝑘
𝑚𝑎𝑥[−𝑔�̂�𝑇

′𝑢𝑖
′̅̅ ̅̅ ̅̅ , 0])

𝛾2

− 𝐶2

𝜀2

𝑘
+ (𝜈 +

𝜈𝑡

𝜎𝜀

) ∇2𝜀 

In the above equation, γ1  and γ2  are dimensionless 

model constants that determine the stability of the model. 

Cg
′  is a nondimensional model constant that incorporates 

the characteristic length L and influences the overall 

magnitude of the Nu value predicted by the model. 

In the case of homogeneous Rayleigh-Benard 

convection, the new model can exactly predict the 

theoretical power law of Nu~Nu0Ra1/2Pr1/2 as a steady-

state solution. Here, Cg
′  is exactly derived as the function 

of Nu0, γ1, and γ2.  

The newly proposed model is capable of reproducing 

the Nu dependence across a wide range of Ra and Pr 

parameters in Rayleigh-Bénard convection, closely 

approximating actual experimental results. Specifically, 

values of γ1 = −1.5 and γ2 = 4 are chosen to align with 

experimental observations of Nu ∼ Ra0.3 over the range 

of 107 ≤ 𝑅𝑎 ≤ 1012. 

 

 

4. Conclusions 

 

In this paper, the fundamental limitations of RANS 

models for buoyancy problems and the resulting errors 

have been discussed. It's important to note that the 

purpose of this paper is not to argue that these errors 

render conventional models worthless, but rather to 

clarify the scope of problems for which they can be used. 

For instance, problems resembling vertical natural 

convection in channels are the primary focus of most 

conventional models. Predictions for such problems can 

reasonably be expected to achieve some level of success 

using current buoyancy models. However, flows 

dominated by laminar-like convection cells with nearly 

negligible mean velocity fields, such as Rayleigh-Bénard 

convection, cannot be accurately predicted by 

conventional RANS models in steady-state manners. 

It is believed that the criteria for identifying severe 

limitations also indicate "which problems to prioritize" 

in modeling research. Problems currently labeled as 

severe limitations make it impossible to guarantee model 

convergence and a unique solution before determining its 

accuracy. On the other hand, methods seeking to slightly 

improve an conventional model through a priori 

validation do not significantly impact the applicability of 

the model. Thus, addressing severe limitations should be 

a primary concern to ensure the model's general usability, 

while refining model accuracy should be tackled in 

subsequent steps. 

Furthermore, as a preliminary step towards addressing 

the universal buoyancy issue, this study has developed a 

new model capable of reproducing the theoretical scaling 

power law of Rayleigh-Bénard convection across a broad 

range of Ra and Pr parameters. Drawing from the 

principles of the Ra-Pr scaling theory, we anticipate that 

these modeling principles can be similarly applied to 

predict the behavior of most other natural convective 

flows. This represents an essential subject for future 

research. 
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