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1. Introduction 

 

In the context of Nuclear Thermal Propulsion (NTP), 

the requisites for nuclear fuel are intricate, given its 

operation under the demanding conditions of a peak 

temperature of approximately 2800 K. The key 

attributes mandated are high fission product retention, 

unwavering thermal stability, an elevated melting point, 

and robust thermal shock resistance. In this pursuit, the 

CERCER (CERamic-matrix Composite fuel with 

Embedded Reactor fuel) nuclear fuel concept has 

garnered attention. It manifests as a configuration 

wherein ceramic nuclear fuel particles are meticulously 

dispersed within a ceramic matrix. ZrC-coated Tri-

structural isotropic (TRISO) or bi-structural isotropic 

(BISO) particle fuel dispersed in ZrC matrix hold 

promise as viable candidates for fulfilling the 

demanding requirements of NTP fuel, effectively 

addressing the multifaceted challenges posed by the 

arduous operating conditions.  

Silver-110m is a highly radioactive fission product 

element which is a γ-ray emitter with a half-life of 249.8 

days. The release of silver-110m from nuclear fuel can 

occur not only the surface contamination of the nuclear 

reactor of NTP but also in the event of an accident 

where it may leak outside the reactor. Therefore, the 

assessment of the diffusion and release behavior of 

silver-110m is necessary for the safety evaluation and 

commercial authorization of NTP. However, there is a 

notable absence of research concerning the diffusion 

behavior of silver-110m within the exceedingly high 

operational temperature range of NTP. 

In this study, silver-110m diffusion constants within 

ZrC were calculated using several computational tools: 

Vienna ab initio simulation package (VASP) as a 

density functional theory (DFT) simulation tool, 

machine learning interatomic potential (MLIP) which 

functions as a machine learning potential generator, and 

Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) as a molecular dynamics (MD) 

simulation tool. [1-2] 

 

 

 

 

2. Methods 

 

To create a diverse training set, VASP-AIMD 

simulations were conducted. At 2800K, simulations 

were carried out for various structures including a 

2×2×2 ZrC cubic lattice. Additionally, structures were 

generated with point defects in the cubic lattice, such as 

Zr vacancy (VZr), C vacancy (VC), ZrC vacancy (VZrC), 

CC vacancy (VCC), and ZrZr vacancy (VZrZr). Moreover, 

structures were generated with the introduction of Ag 

atoms into these defect sites which are AgZr, AgC, AgZrC, 

AgCC, and AgZrZr. Each AIMD simulation was run for a 

duration of 700-time steps in each structure, with a time 

step of 1 fs in NVT ensemble. Out of the 700 

configuration sets in each structure, the initial 200 sets 

were discarded. From the remaining 500 sets, a 

selection was made every 5-time steps to create the 

training set. This resulted in a total of 1100 training sets, 

each composed of 100 sets from 11 distinct structures. 

Each training set contains information about the 

positions of atoms, the direction and magnitude of 

forces acting on them at those positions, as well as the 

total energy of the system. All of this information is 

used to create a new interatomic potential using 

regression methods with machine learning.  

The 1100 training sets were employed to generate a 

machine learning potential using the MLIP (Machine 

Learning Interatomic Potential) program. An MTP-level 

of 12 was utilized, and the maximum distance cut 

between atoms was set at 7 Å .  

The generated potential was named MTP-1. 

LAMMPS simulations were conducted using MTP-1. 

The system was stabilized at 2800 K and 0 Pa over 

2000-time steps with a time interval of 1 fs. In other 

words, LAMMPS simulations were performed for a 

total of 22,000 sets, each consisting of 2000 steps, 

across 11 distinct structure. Among these, structures 

significantly different from those used to create the 

MTP-1 potential were selected, resulting in a total of 

149 steps out of the 22,000 steps. These selected 

structures were then subjected to single-point 

stabilization using VASP. The 149 new configurations 

that underwent VASP calculations were combined with 

the training set that was used to create MTP-1. This 

combined training set was used to create a new potential 
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using MLIP, named MTP-2. Using MTP-2, another MD 

simulation was conducted. This time, an NPT ensemble 

was employed at 2800 K and 0 Pa for 20,000-time steps 

in each structure. The reason for using a longer time 

step is that MTP-2 was generated from a more extensive 

and diverse training set compared to MTP-1. To capture 

structures with significant differences from those used 

to create MTP-2's training set through LAMMPS 

simulations, a longer time step was necessary. In the 

second LAMMPS simulation, 77 new structures were 

selected. These newly obtained configurations were then 

subjected to VASP single-point calculations, and the 

resulting data was added back to the training set to 

create a new potential, MTP-3.  

Using MTP-3, another LAMMPS simulation was 

conducted at 2800 K and 0 Pa in an NTP ensemble, 

spanning a total of 100,000-time steps in each structure. 

However, throughout this simulation, we were unable to 

identify configurations that displayed significant 

differences from the training set used to construct MTP-

3. As a result, the active learning iteration aimed at 

potential refinement concluded at this point. 

The diffusion coefficient was determined by utilizing 

the MTP-3 potential. LAMMPS simulations were 

performed in an NPT ensemble at 2800 K and 0 Pa for a 

duration of 1,000,000-time steps (equivalent to 1 ns), 

during which the mean square displacement of silver 

atoms was calculated with below equation. 

 

 6DAgt = (rAg(t)-rAg(0))2 (1) 

 

DAg = Diffusion coefficient of silver in ZrC [m2/s] 

t = time [s] 

rAg(t) = The displacement of silver over time t [m] 

rAg(0) = The position of silver at time t = 0s [m] 

 

While validating the accuracy of the potential, it 

would be ideal to compare the diffusion coefficient of 

silver derived from the MTP-3 potential with 

experimental values. However, due to the lack of both 

experimental and simulated diffusion data for silver at 

the elevated temperature of 2800 K in ZrC, the author 

resorted to assessing the precision of MTP-3 potential 

by comparing the thermal expansion values of ZrC 

calculated using MTP-3 with experimental data 

 

3. Results 

 

Figure 1 demonstrates an excellent correlation between 

the experimentally reported thermal expansion data of 

ZrC and the thermal expansion data of ZrC measured 

using the newly developed machine learning potential in 

this study. These results provide confidence in the 

credibility of the constructed machine learning potential. 
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Figure 1. Thermal expansion behavior of ZrC calculated 

in this research and other experimental results. [3-5] 

It has been reported that, among the point defects 

containing silver atoms in ZrC, the most stable 

configuration occurs when a silver atom occupies a 

vacancy at a carbon site. Furthermore, due to the lowest 

binding energy observed between the carbon vacancy 

and Ag substitution at a carbon site, it can be inferred 

that silver atoms in ZrC predominantly undergo 

diffusion driven by carbon vacancy. [6] 

Figure 2 illustrates the graph of the Mean Squared 

Displacement (MSD) of a silver atom when substituting 

one carbon atom with a silver atom in a 4×4×4 ZrC0.97 

cubic structure. The diffusion was simulated using the 

LAMMPS software with the MTP-3 potential model 

under NPT ensemble at a temperature of 2800 K and 

pressure of 0 Pa. The graph depicts the MSD of the 

silver atom as a function of simulation time. In this 

graph, the slope divided by the geometric factor of 6 

corresponds to the diffusion constant of the silver atom 

within the ZrC lattice at 2800 K. The value was 

determined to be 7.2 × 10-11 m2/s. In the future, the 

diffusion constants will also be measured using the same 

method at temperatures of 2400 K and 3200 K. The 

calculated diffusion constants will provide valuable 

insights for empirical validation and safety analysis for 

NTP (Nuclear Thermal Propulsion) applications. 
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Figure 2. MSD along the time of silver atom in ZrC0.97 
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