# Validation of Radiochemical Analysis Results for NPP Dismantling Radwastes : Using Radioactive Metal, Concrete and Soil Reference Materials

Seungsu Shin\*, Sojung Shim, Chang Heon Lee and Young-Ku Choi

Nuclear Decommissioning Research Institute, B/D A #614, Techno 4-ro, Yuseong-Gu, Daejeon, KOREA \*Corresponding author: seungsu\_88@ndri.co.kr

#### 1. Introduction

As the Kori-1 Nuclear Power Plant (NPP) was permanently shut down in 2017, the various researches related to its decommissioning are performing in depth. The amounts of low- and intermediate-level radioactive wastes generated in the dismantling of nuclear power plant is expected to be about 14,500 drums, these wastes are mainly contaminated metal scraps, concrete and soil fragments discharged through dismantling and decontamination process of various equipment and structures related to operation of the NPP. However, they have complex chemical matrices and extensive radioactivity, making it difficult to differentiate between deregulated and regulated waste unless managed systematically through radiochemical analysis. Therefore, a procedure for ensuring or monitoring the validity of the results must be established after confirming and verifying the radioactivity analysis method for such radioactive waste samples. In this study, the comparative analysis sample are SUS 304 liquid reference material (RM) and Portland concrete and soil certification reference material (CRM), respectively. And gamma-emitting nuclides (60Co, <sup>134</sup>Cs, <sup>137</sup>Cs) and beta-emitting radionuclides (<sup>90</sup>Sr) were selected as the analyte. Finally, En-score was applied to a statistical treatment of the results obtained from three institutes participated in the interlaboratory comparisons. En-score indicates at what multiple of the value of the extended uncertainty between the certified value and the measured value analyzed by the analysis agency, and was judged to be suitable when -1 < En < 1.

## 2. Materials and Methods

## 2.1 Characteristics of Rad-wastes from dismantling.

As for the amount of the waste generated from unit 1 of the light-water reactor predicted by the IAEA, contaminated metals are most frequently generated and followed by concrete as shown in Table 1. Therefore, SUS 304 (metal), Portland concrete (matrix:  $SiO_2$ , CaO,  $Al_2O_3$ ) and soil (matrix:  $SiO_2$  and  $Al_2O_3$ ) were selected.

Table 1. The amount of Radwaste from PWR dismantling.

| Waste Forms           | Amount<br>(Drum) | Proportion<br>(%) |
|-----------------------|------------------|-------------------|
| Metal Waste           | 650              | 10.5              |
| Concrete Waste        | 300              | 4.8               |
| Contaminated Metal    | 3,500            | 56.5              |
| Contaminated Concrete | 600              | 9.7               |

| Contaminated Metal Piece | 150   | 2.4  |
|--------------------------|-------|------|
| Contaminated Solid Piece | 1,000 | 16.1 |
| Total                    | 6,200 | 100  |

### 2.2 Preparation of the radioactive Reference Materials

The radioactive acidic solutions based on SUS-304 used as the matrix for the RM were prepared. In order to carry out this study, the Korea Research Institute of Standards and Science (KRISS) was commissioned to manufacture this RMs with the same chemical composition as shown in Table 2 and Fig. 1. The CRMs of the concrete and soil in bead type with the same chemical compositions as shown in Table 3 and 4 along with Fig. 1 were purchased from KRISS.

Table 2. Characteristics of a metal RM.

| Species           | Concentration<br>(g/kg) | Radioactivity<br>(Bq/kg) |
|-------------------|-------------------------|--------------------------|
| Fe                | 13.72                   | -                        |
| Ni                | 1.86                    | -                        |
| Cr                | 3.8                     | -                        |
| Mn                | 0.4                     | -                        |
| <sup>60</sup> Co  | -                       | 267                      |
| <sup>134</sup> Cs | -                       | 206                      |
| <sup>137</sup> Cs | -                       | 255                      |
| <sup>90</sup> Sr  | -                       | 248                      |

Table 3. Characteristics of a concrete CRM.

| Species                        | Concentration<br>(g/kg) | Radioactivity<br>(Bq/kg) |
|--------------------------------|-------------------------|--------------------------|
| SiO <sub>2</sub>               | 740                     | -                        |
| CaO                            | 189                     | -                        |
| Al <sub>2</sub> O <sub>3</sub> | 34.6                    | -                        |
| <sup>60</sup> Co               | -                       | 0.1 ~ 1.0                |
| <sup>137</sup> Cs              | -                       | 0.1 ~ 1.0                |

Table 4. Characteristics of a soil CRM.

| Species                        | Concentration<br>(g/kg) | Radioactivity<br>(Bq/kg) |  |
|--------------------------------|-------------------------|--------------------------|--|
| SiO <sub>2</sub>               | 670                     | -                        |  |
| Al <sub>2</sub> O <sub>3</sub> | 199                     | -                        |  |
| K <sub>2</sub> O               | 23.5                    | -                        |  |
| Fe <sub>2</sub> O <sub>3</sub> | 14.8                    | -                        |  |
| Na <sub>2</sub> O              | 14.5                    | -                        |  |
| CaO                            | 7.3                     | -                        |  |
| MgO                            | 3.5                     | -                        |  |
| <sup>60</sup> Co               | -                       | 0.1 ~ 1.0                |  |
| <sup>137</sup> Cs              | -                       | 0.1 ~ 1.0                |  |



Fig 1. RM and CRMs for the analysis of <sup>90</sup>Sr, <sup>134</sup>Cs, <sup>137</sup>Cs, <sup>60</sup>Co

### 3. Result and Discussion

3.1 Statistical review for the analysis results

$$(E_n)_i = \frac{x_i - x_{pt}}{\sqrt{U^2(x_i) + u^2(x_{pt})}}$$

In the equation [2],

- *x<sub>i</sub>*: *Reported value of A, B and C test institutes*
- *x<sub>pl</sub>: Assigned value determined by reference laboratory*
- $U(x_i)$ : Expanded uncertainty of A, B and C institute
- *U*(*x<sub>pt</sub>*): *Expanded uncertainty of certified value*
- Satisfactory range: -1.0 < En < 1.0

 $x_i$  is the average value of A, B, and C institutions,  $x_{pt}$  is the certification value of the cross-analysis sample,  $U(x_i)$  is the extended uncertainty of A, B, and C institutions, and  $u(x_{pt})$  is the extended uncertainty of the certification value.

#### 3.2 Evaluation of the analysis results

To ensure the validity of the radionuclide analysis results, A, B and C test institutes were participated in the comparative test and the results were shown in Table 5-7.

| Table 5. Ana | lysis results | using RM | of SUS 304 |
|--------------|---------------|----------|------------|
|              |               |          |            |

|  | Analysis<br>Institute | Radio-            | Assigned value           |                      | Reporte                  | En-                  |       |        |  |
|--|-----------------------|-------------------|--------------------------|----------------------|--------------------------|----------------------|-------|--------|--|
|  |                       | nuclide           | Radioactivity<br>(Bq/kg) | Uncertainty<br>(k=2) | Radioactivity<br>(Bq/kg) | Uncertainty<br>(k=2) | score | Result |  |
|  |                       | 134Cs             | 206                      | 8                    | 179                      | 3                    | -3.1  | US     |  |
|  |                       | 137Cs             | 255                      | 13                   | 254                      | 6                    | -0.1  | S      |  |
|  | А                     | <sup>60</sup> Co  | 267                      | 10                   | 259                      | 6                    | -0.7  | S      |  |
|  |                       | 90Sr              | 248                      | 12                   | 245                      | 8                    | -0.2  | s      |  |
|  | в                     | <sup>134</sup> Cs | 206                      | 8                    | 182                      | 11                   | -1.8  | US     |  |
|  |                       | <sup>137</sup> Cs | 255                      | 13                   | 245                      | 14                   | -0.5  | s      |  |
|  |                       | <sup>60</sup> Co  | 267                      | 10                   | 265                      | 15                   | -0.1  | S      |  |
|  |                       | 90Sr              | 248                      | 12                   | 335                      | 15                   | 4.5   | US     |  |
|  |                       | 134Cs             | 206                      | 8                    | 185                      | 12                   | -1.5  | US     |  |
|  |                       | 137Cs             | 255                      | 13                   | 246                      | 22                   | -0.4  | S      |  |
|  |                       | <sup>60</sup> Co  | 267                      | 10                   | 265                      | 24                   | -0.1  | S      |  |
|  |                       | 90Sr              | 248                      | 12                   | 347                      | 21                   | 4.1   | US     |  |

\* US: Unsatisfactory, S: Satisfactory

Table 6. Analysis results using CRM of concrete

| Analysis |         | Radio-  | Assigne                  | Assigned Value        |                          | Reported Value        |                       |        |   |
|----------|---------|---------|--------------------------|-----------------------|--------------------------|-----------------------|-----------------------|--------|---|
|          | Num     | nuclide | Radioactivity<br>(Bq/kg) | Uncertatinty<br>(k=2) | Radioactivity<br>(Bq/kg) | Uncertatinty<br>(k=2) | E <sub>n</sub> -Score | Result |   |
|          |         | Co-60   | 80.3                     | 3.1                   | 123.9                    | 10.9                  | 3.8                   | US     |   |
| А        | 1 I I   | Cs-137  | 75.4                     | 4.5                   | 117.7                    | 17.3                  | 2.4                   | US     |   |
| A        | П       | Co-60   | 1030                     | 70                    | 1004.0                   | 86.1                  | -0.2                  | S      |   |
|          |         | Cs-137  | 1080                     | 67                    | 991                      | 146                   | -0.6                  | S      |   |
|          | I<br>II | Co-60   | 80.3                     | 3.1                   | 84.0                     | 5.5                   | 0.6                   | S      |   |
| В        |         | Cs-137  | 75.4                     | 4.5                   | 77.0                     | 5.0                   | 0.2                   | S      |   |
| D        |         | Co-60   | 1030                     | 70                    | 1121                     | 75                    | 0.9                   | S      |   |
|          |         | Cs-137  | 1080                     | 67                    | 1126                     | 75                    | 0.5                   | S      |   |
|          |         | Co-60   | 80.3                     | 3.1                   | 88.8                     | 8.0                   | 1.0                   | S      |   |
| с        | · ·     | Cs-137  | 75.4                     | 4.5                   | 83.2                     | 5.1                   | 1.2                   | US     |   |
| C        | Ш       | Co-60   | 1030                     | 70                    | 1120                     | 102                   | 0.7                   | S      |   |
|          |         |         | Cs-137                   | 1080                  | 67                       | 1121                  | 70                    | 0.4    | S |

| Table 7. Analysis | s results using | CRM of soil |
|-------------------|-----------------|-------------|
|-------------------|-----------------|-------------|

| Analysis | Num | Radio- | Assigned Value |     | Reported Value |                          |                       |                          |                       |
|----------|-----|--------|----------------|-----|----------------|--------------------------|-----------------------|--------------------------|-----------------------|
|          |     | Num    | Num            | Num | nuclide        | Radioactivity<br>(Bq/kg) | Uncertatinty<br>(k=2) | Radioactivity<br>(Bq/kg) | Uncertatinty<br>(k=2) |
|          | 1   | Co-60  | 124            | 10  | 119            | 11                       | -0.3                  | S                        |                       |
| А        | 1   | Cs-137 | 119            | 10  | 120            | 18                       | 0.1                   | S                        |                       |
| A        | Ш   | Co-60  | 1176           | 68  | 1174           | 39                       | -0.03                 | S                        |                       |
|          |     | Cs-137 | 1115           | 56  | 1161           | 65                       | -0.5                  | S                        |                       |
|          | 1   | Co-60  | 124            | 10  | 128            | 8                        | 0.3                   | S                        |                       |
| В        |     | Cs-137 | 119            | 10  | 127            | 8                        | 0.6                   | S                        |                       |
| D        | Ш   | Co-60  | 1176           | 68  | 1200           | 78                       | 0.2                   | S                        |                       |
|          |     | Cs-137 | 1115           | 56  | 1214           | 79                       | 0.9                   | S                        |                       |
|          |     | Co-60  | 124            | 10  | 128            | 8                        | 0.3                   | S                        |                       |
| С        | 1   | Cs-137 | 119            | 10  | 123            | 11.                      | 0.3                   | S                        |                       |
|          |     | Co-60  | 1176           | 68  | 1201           | 109                      | 0.2                   | S                        |                       |
|          | Ш   | Cs-137 | 1115           | 56  | 120            | 75                       | 0.9                   | S                        |                       |

In the case of the metal radioactive liquid reference material (RM), all participating institutions provided satisfactory results that were in accordance with the reference values for gamma emitters, <sup>60</sup>Co and <sup>137</sup>Cs. However, for <sup>134</sup>Cs, the results were lower than the reference values, and this is due to inadequate correction of simultaneous synthesis effect of <sup>134</sup>Cs, and correction for this was necessary [3].

As for  ${}^{90}$ Sr, a pure beta emitter, only one of the three institutes provided satisfactory result that matched the reference value, while the other two labs presented significantly high results than the reference value. If the interfering radionuclides gamma-ray emitting beta nuclides such as  ${}^{134}$ Cs and  ${}^{137}$ Cs are not completely removed, the result of radioactivity concentration of  ${}^{90}$ Sr in the sample can be overestimated, more than 100%.

In the case of the soil radioactive certified reference material (CRM), all three institutes reported satisfactory results for <sup>60</sup>Co and <sup>137</sup>Cs. However, for the concrete CRM, unsatisfactory results for <sup>60</sup>Co and <sup>137</sup>Cs in the low radioactive ranges were reported by A and C institutes. It was assumed that this is due to the failure to correct the effect of the density of the bead sample in the low-concentration radioactivity range.

#### 4. Conclusions

Interlaboratory comparisons was carried out to monitor the validity of analysis results using the RM of SUS 304 and two CRMs of concrete and soil. If such study is continuously carried out, it will be useful that QA and QC of radioactivity measurements of the radioactive waste generated from NPP dismantling.

#### REFERENCES

- Chang Heon Lee, H. J. Ahn, J. M. Lee, Y. K. Ha and J.Y. Kim, Rapid separation of <sup>99</sup>Tc, <sup>90</sup>Sr, <sup>55</sup>Fe, <sup>94</sup>Nb, and <sup>59,</sup>
  <sup>63</sup>Ni in radioactive waste samples, Journal of Radioanalytical and Nuclear Chemistry (2016) 308:809– 816.
- [2] KS Q ISO 13528, Statistical Methods for proficiency Testing by inter-laboratory comparisons, 2015.
- [3] Mo Sung Lee, Study on the cascade summing correction for high efficiency HPGE detector, J. Korea Asso. Radiat. Prot. (2016) 30, 107-112.