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1. Introduction 

 
When radioactive substances are released into the 

atmosphere in the vicinity of a nuclear power plant, 

various physical, chemical, and biological transport 

processes, as well as dispersion and deposition processes, 

occur depending on meteorological conditions and 

topography, leading to the redistribution of 

concentrations. Particularly, local wind conditions have 

a significant impact on dispersion, making predictions 

complex due to diverse local winds and seasonal 

meteorological changes around nuclear power plants. 

Therefore, for accurate atmospheric dispersion 

predictions, it is necessary to utilize 3D meteorological 

models and atmospheric dispersion models, considering 

wind fields and emission conditions. 

To rapidly and accurately calculate the dispersion of 

radioactive materials, obtaining high-resolution wind 

information over a spatially confined area to precisely 

understand wind characteristics is crucial. However, as 

meteorological data becomes higher in resolution, the 

data volume exponentially increases, potentially causing 

data overload issues. Thus, efficient data compression 

methods are needed to apply large-scale high-resolution 

wind data to atmospheric dispersion models. 

In this study, we introduce an algorithm that combines 

Deep learning for generating high-resolution wind data 

and data compression using SVD to efficiently apply 

high-resolution wind data to atmospheric dispersion 

models. Specifically, we targeted the Kori Nuclear 

Power Plant, which has the highest population density 

near a domestic nuclear power plant, and extracted high-

resolution wind speed data (U, V) using WRF for the 

year 2022, twice a day (12 am, 12 pm). This data was 

then utilized as a dataset for Deep learning training, and 

the process involves applying SVD decomposition to the 

output high-resolution wind data to compress the data. 

 

2. Methodology 

 

2.1 Constructing Datasets using WRF  

 

The mesoscale numerical weather prediction model 

WRF-ARW (Advanced Research WRF) v4.1 was used 

to obtain high-resolution wind data in the vicinity of the 

Kori NPP [1]. WRF is a community model developed 

around the National Center for Atmospheric Research 

(NCAR) in the United States that uses the Arakawa-C 

horizontal grid scheme to simulate compressible, non-

stationary atmospheric flow fields. The modeling 

domain is constructed using a nesting technique, 

comprising the first domain covering the Korean 

Peninsula with a grid resolution of 1.5 km and the final 

analysis domain, focusing on the Kori Nuclear Power 

Plant area, with a horizontal resolution of 300 m (Figure 

1). The vertical layers consist of a total of 23 levels, 

mirroring the vertical levels of LDAPS (Local Data 

Assimilation and Prediction System), which are defined 

as (pressure levels (hPa): 1000, 975, 950, 925, 900, 875, 

850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 

300, 250, 200, 150, 100, 70).  

The initial and boundary data for the WRF model were 

obtained from the LDAPS regional forecasting model 

provided by KMA (Korea Meteorological 

Administration), which offers 3-hourly interval data at a 

1.5 km grid resolution. 

 

 
 
Fig. 1. Setting up domains for high-resolution simulation near 

the Kori Nuclear Power Plant using WRF. 

 

2.2 Uformer Model 

 

 Image restoration aims to recover high-quality images 

from their degraded counterparts and encompasses a 

range of computer vision applications such as image 

super-resolution (SR) and noise reduction. Recently, 

Transformer-based image restoration networks have 

showcased promising advancements over convolutional 

neural networks, thanks to their parameter-independent 

global interactions [2]. The fusion of Transformer and 

UNet architectures in Uformer empowers it with the 

capability to capture both local and global dependencies 

for image restoration tasks. In this study, we leverage the 

Transformer-based Uformer model for the enhancement 

of meteorological data through deblur. 

LDAPS data was assumed to be a blurred version of 

WRF data, and the Uformer model’s deblurring function 

was employed to produce data with more physically 

accurate characteristics. To use the Uformer model, a  

preprocessing step was undertaken to upscale LDAPS 

data to the size of WRF data, resulting in the creation of 



Transactions of the Korean Nuclear Society Autumn Meeting 

Gyeongju, Korea, October 26-27, 2023 

 

 
128x128 data by filling in duplicate values. In this paper, 

we refer to the process of using this duplicated 128x128 

LDAPS data as input and WRF data as the target output 

to increase the number of meaningful pixels as 'Super-

resolution'. 

The structure of the Uformer is shown in Figure. 2. 

Uformer is based on UNet [3] architecture, where 

modifying the convolution layers to Transformer blocks 

while keeping the same overall hierarchical encoder-

decoder structure and the skip-connections [4]. Unlike 

traditional ConvNet-based architectures, Uformer is built 

upon the LeWin Transformer block, a crucial component 

that allows it to not only handle local context but also 

efficiently capture long-range dependencies. 
 

 
 

Fig. 2. Overview of Uformer 

 

2.3 SVD for Data Compression 

 

SVD with the maximum energy packing property is 

usually used in compression. SVD decomposes a matrix 

into orthogonal components with which optimal sub-

rank approximations may be obtained [5]. As illustrated 

in equation (1), truncated SVD transformation with rank 

r may offer significant savings in storage over storing the 

whole matrix with accepted quality.  

 

X =  ∑ 𝑆𝑖𝑈𝑖𝑉𝑖
𝑇 ≈  𝑠1𝑢1𝑣1

𝑇𝑘
𝑖=1     

+ 𝑠2𝑢2𝑣2
𝑇 + ⋯ + 𝑠𝑘𝑢𝑘𝑣𝑘

𝑇           (1) 

 

Where R is the compression percentage, k is the 

chosen rank for truncation; m and n are the number of 

rows and columns in the image respectively. 

 

𝑅 =  
𝑛𝑘+𝑘+𝑚𝑘

𝑛𝑚
∗ 100                          (2) 

 

 
 

Fig. 3. (a) Change in MSE with Compression Ratio R (b) 

Change in MSE with Rank R 

 

In this study, SVD decomposition was performed at 

k=43 and R=67.4500 in consideration of the 

compression efficiency of wind data according to Figure. 

3., and data compression was achieved at a scale of 1/3 

of the original data. 

 

2.4 Lagrangian Particle Dispersion Model (LPDM) 

 

The atmospheric dispersion model can be broadly 

categorized into Lagrangian and Eulerian methods. The 

Lagrangian method has the advantage of convenient 

treatment of point sources compared to the Eulerian 

method. In the case of a nuclear power plant accident, the 

atmospheric dispersion and transport of radioactive 

isotopes involve treating point sources, making the 

Lagrangian method more useful than the Eulerian 

method for calculating the spread of radioactive 

materials. Therefore, this study employed the Lagrangian 

particle dispersion model as the atmospheric dispersion 

model for conducting the research. 

Among Lagrangian methods, the Lagrangian Particle 

Dispersion Model (LPDM) represents atmospheric 

pollution as particles are continuously emitted. It 

determines the positions of each emitted particle as 

follows: 

The movement of particles within the flow is 

represented by Equation (3). 

 
𝑑𝑋

𝑑𝑡
 = 𝑈                                   (3) 

 

𝑋 represents the spatial position of particles, and U, 

the wind component at the particle's location, is 

expressed as Equation (4).  

 

𝑈 =  𝑈 + 𝑈𝑡                              (4) 

 

The particle velocity 𝑈 represents the average velocity 

of particles influenced by meteorological data, while 𝑈𝑡 

corresponds to the fluctuation attributed to turbulence 

effects. 

Turbulence induces small displacements in fluid 

motion, and these small displacements possess a random 

nature. The turbulent component in the horizontal 

direction is calculated as shown in Equations (5) and (6). 

 

𝑢𝑡(𝑡 + 𝑑𝑡) = 𝑢𝑡(𝑡) + 𝑑𝑢𝑡(𝑡)              (5-a) 

𝑣𝑡(𝑡 + 𝑑𝑡) = 𝑣𝑡(𝑡) + 𝑑𝑣𝑡(𝑡)              (5-b) 

 

𝑑𝑢𝑡(𝑡) = −𝑢𝑡(𝑡)
𝑑𝑡

𝑇𝐿𝑢
 + √

2𝑑𝑡

𝑇𝐿𝑢
𝜎𝑢𝑠𝑅𝐴𝑁𝐷(0,1)    (6-a) 

𝑑𝑣𝑡(𝑡) = −𝑣𝑡(𝑡)
𝑑𝑡

𝑇𝐿𝑣
 + √

2𝑑𝑡

𝑇𝐿𝑣
𝜎𝑣𝑠𝑅𝐴𝑁𝐷(0,1)    (6-b) 

  
𝑇𝐿𝑢  and 𝑇𝐿𝑣  represent the Lagrangian time scales, 

while 𝜎𝑢𝑠𝑅𝐴𝑁𝐷(0,1) and 𝜎𝑣𝑠𝑅𝐴𝑁𝐷(0,1)  denote 

random numbers from a normal distribution with mean 0 

and standard deviation 𝜎𝑢𝑠  and 𝜎𝑣𝑠 , respectively, 
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representing the random standard deviations of turbulent 

velocity components.  

 

3. Results and Discussion 
    

3.1 Error Analysis of Wind Data Super-Resolution using 

Uformer 

 

In this study, a model is trained to generate high-

resolution (300 m) data using the 1.5 km LDPAS model 

input from the Korea Meteorological Administration. 

For training, a dataset was constructed by collecting data 

from January to December 2022. For testing, random 

samples from January, March, and May 2023, spanning 

1 to 5 days each, were used. The wind vector elements U 

and V were used as the training features. 

Figure. 4. visualizes the test results of the Uformer 

model, comparing the generated output with the input 

LDAPS data and the target WRF data. The results 

generated by Uformer exhibit a higher resolution than the 

input LDAPS data, and overall show similar analysis 

patterns to manually generated high-resolution WRF 

analysis data. 

 
Input(LDAPS)        Restored(Model data)     Target(WRF) 

 
January 

 
March 

 
May 

 
 
Fig. 4. Visual evaluation of generated high-resolution analysis 

data, LDAPS model data, and WRF performance results 

 

  

PSNR (dB) 

 

SSIM 

 

R-squared 

 

Jan U 

Jan V 

Mar U 

Mar V 

May U 

May V 

31.984 

28.751 

24.467 

27.152 

23.156 

23.283 

0.972 

0.957 

0.901 

0.944 

0.925 

0.920 

0.961 

0.930 

0.955 

0.938 

0.949 

0.909 

 

Table. 1. Quantitative evaluation of Uformer using PSNR, 

SSIM, and R-squared 

 

   Table. 1. presents the evaluation results of the Uformer 

model's test outcomes depicted in Figure. 4., measuring 

PSNR, SSIM, and R-squared between the model data and 

the WRF analysis data. PSNR (Peak Signal-to-Noise 

Ratio) is one of the quantification methods for assessing 

the quality loss of restored images, while SSIM 

(Structural Similarity Index) measures the structural 

similarity index between distortion-free high-quality 

images and restored images. As the high-resolution wind 

data generated through Uformer becomes more similar 

to manually generated high-resolution WRF analysis 

data, both PSNR and SSIM show improvement. 

Furthermore, R-squared was utilized to evaluate the 

predictive performance of the model. Among the random 

test results, the highest and lowest PSNR values are 

31.984 and 23.156, respectively. The results of SSIM and 

R-squared demonstrate values exceeding 0.9 for the U 

and V test datasets of January, March, and May, 

confirming that the model data closely predicts WRF's 

high-resolution analysis data. 

Furthermore, utilizing Uformer for high-resolution 

wind data prediction offers temporal efficiency 

compared to high-resolution wind data prediction 

through WRF. While manually generating high-

resolution analysis data using the CPU (Intel Core i5-

9600K CPU, 3.70GHz) might take at least several tens 

of minutes, using Uformer based on the GPU (NVIDIA 

GeForce RTX 3090) takes only about 0.276 seconds for 

high-resolution enhancement. 

In this manner, the creation of high-resolution wind 

data through the Uformer model offers the advantage of 

producing similar high-resolution data as generated by 

WRF, while also providing the convenience of obtaining 

it much more quickly within a simplified timeframe. 

 

3.2 Lightweight Compression of Wind Data 

 

The model data obtained through Uformer, i.e., the 

restored data, is in a resolution of 300m, which results in 

an approximately 25 times increase in data volume 

compared to the LDAPS model data with a resolution of 

1.5km. Such a significant increase in data volume can 

hinder the efficient utilization of high-resolution wind 

data. Therefore, in this study, we aim to address the issue 

of capacity overload caused by high resolution by 
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employing SVD compression on the model data, which 

is then used in atmospheric dispersion models.  

 

 
 
Fig. 5. SVD Based Compression (a) Comparison of January U-

wind data between original data and compression ratio 67% 

(truncation to k=43). (b) Comparison of January V-wind data 

between original data and compression ratio 67% (truncation to 

k=43). 

 

As shown in Figure 5, when data compression was 

performed at a compression ratio of 67% through SVD 

decomposition, the MSEs of the original data and the 

reconstruction data were (a) 3.2823e-06 and (b) 4.5704e-

06, respectively. Therefore, through Singular Value 

Decomposition (SVD), we have been able to obtain 

results very similar to using the entire original data by 

utilizing only 67% of the original data. 

 

3.3 Results of the Lagrangian Particle Dispersion Model 

Execution 

 

   We conducted numerical simulations using the 

Lagrangian Particle Dispersion Model (LPDM) on high-

resolution wind data (U, V) generated through Uformer 

after compressing the data using Singular Value 

Decomposition (SVD). 

 

 
 
Fig. 6. Horizontal distributions simulated for one hour using 

LPDM at 1200 LST on January 3, 2023, from the Kori Nuclear 

Power Plant. 

 

   Figure. 6. shows the results of performing Lagrangian 

Particle Dispersion (LPDM). The hypothetical release 

point of particles was set to 129.3E, 35.3N, 

corresponding to the location of the Kori Nuclear Power 

Plant. The model was executed to simulate particle 

dispersion at 700 hPa over a duration of one hour with 

constant particle emission. 

   Thus, we have demonstrated that the high-resolution 

wind data rapidly obtained through Uformer can 

effectively be applied to LPDM using only 67% of the 

data through SVD. 

 

4. Conclusions 

 

This study introduces an algorithm that applies Deep 

learning and SVD decomposition to wind data, enabling 

a precise understanding of wind characteristics while 

achieving high compression efficiency. Although the 

study covers only an area of approximately 1470 km² 

based on the Kori Nuclear Power Plant, not 

encompassing the entire Korean Peninsula, and primarily 

focuses on increased horizontal resolution, it provides 

valuable insights that can contribute to more accurate and 

efficient atmospheric dispersion modeling results. 
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