Effect of Correlation Factors on the Measurement Uncertainty of Physical Inventory in Bulk Handling Facilities

Presented to the 2023 KNS Autumn meeting

2023.10.26.(Thu.)

Korea Institute of Nuclear non-proliferation and Control (KINAC)

Haneol LEE

Material Balance Evaluation (MBE)

In bulk handling facilities (BHFs)

MBE process

1) Calculate MUF

MUF = PB + X - Y - PE

- 2) Calculate measurement uncertainty of MUF (σ_{MUF})
- 3) Evaluate the MUF by comparing MUF and σ_{MUF}

01 Background

...

Legal basis of MBE^{*}

% nsic.mssp.go.kr/nsic.do?nsicKey=300101

NSSC notification No. 2017-83

- (Article 4) National safeguards inspection includes
 - (Subparagraph 8) verification of uncertainties in material accounting including MUF

01 Background

MBE in national inspection

As-Is (IAEA Inspection)

- Adopt the results of IAEA results
- Purpose of IAEA inspection:
 - Diversion detection

To-Be (National Inspection)

- Independent MBE in national inspection
- Purpose of national inspection
 - Diversion detection
 - Evaluation of facilities' accounting system

Develop an **optimized MBE method** for national inspection, which **satisfies diversion detection** & **accounting system evaluation**

Uncertainty expression methods in MBE

Background

Correlation factors in GUM

• Combined standard uncertainty of mesurand X with n variables

Equation for the mesurand X

$$X = f(x_1, x_2, \dots, x_n)$$

Apply Taylor series $X = X_o + \sum_{i=1}^n \frac{\partial X}{\partial x_i} (x_i - x_{i0}) + \sum_{k=1}^n \sum_{j=1}^n \frac{1}{2!} \frac{\partial^2 X}{\partial x_j x_k} (x_j - x_{j0}) (x_k - x_{k0}) + \cdots$

Approximation

$$X \cong X_o + \sum_{i=1}^n \frac{\partial X}{\partial x_i} (x_i - x_{i0})$$

Estimate the variance of the mesurand X $E[(X - X_o)^2] = E\left[\left(\sum_{i=1}^n \frac{\partial X}{\partial x_i}(x_i - x_{i0})\right)^2\right]$ Usually neglected for single item measurement $u_c(X)^2 = \sum_{i=1}^n \left(\frac{\partial X}{\partial x_i}\right)^2 u(x_i)^2 + \sum_{j=k+1}^n \sum_{k=1}^{n-1} \frac{\partial^2 X}{\partial x_j \partial x_k} r(x_j, x_k) u(x_i) u(x_j)$

Independent factors (Random components) Correlation factors (Systematic components)

)1 Background

- Correlation factors were usually neglected due to the low contribution to propagate the combined uncertainty of a mesurand
- However, the contribution significantly increases if;
 - The number of variables (n) significantly increases
 - The correlation between variables are strong $(r(x_j, x_k) = 1)$
- Combined MUF uncertainty (σ_{MUF}) satisfies both criteria
 - $-N \gg 1,000, r(x_j, x_k) = \pm 1$

Purpose of the research

Compare the σ_{MUF} with correlation and without correlation for accounting systems in a benchmark bulk handling facility

• Governing equation for PE $M(PE) = \sum_{i=1}^{I} \sum_{j=1}^{J} (m_{ij} f_{U,ij} w_{235,ij})$

```
m: Net mass,f: Uranium concentration,w_{235}: {}^{235}U enrichment,i: number of stratum (i = 1, 2, ..., I)j: number of lot (process) (j = 1, 2, ..., J)
```

- Measurement (uncertainty) components in inventory taking
 - Weighing (m) with EBAL
 - EBAL indicator (X), buoyancy factor (f_b) , and calibration factor (f_c)
 - U concentration analysis (f_U) with GRAV
 - Oxygen to Uranium ratio (O/U)

> Mass ratio (m_i/m_f) , impurity concentration (w_I, w_F) , and ²³⁵U enrichment (w_{235})

- -²³⁵U enrichment (w_{235}) with TIMS
 - Isotopic ratio $(R_{234}/R_{238}, R_{235}/R_{238}, R_{236}/R_{238})$
 - Sample meas. ratio $(RS(m)_{23x/238})$, cert. meas. ratio $(RC(m)_{23x/238})$, certificate ratio $(RC(c)_{23x/238})$, BKG $(RB_{23x/238})$, det. eff. $(\delta(Y), \delta(L), \delta(F))$

• Measurement uncertainty for weighing (u(m))

- Assumptions:
 - Standard measurement procedure
 - Single calibration for an EBAL between each physical inventory taking (PIT)

• Measurement uncertainty for U conc. analysis $(u(f_U))$

$$f_{U} = \frac{A_{U}}{A_{U} + A_{0}(O/U)} \qquad O/U = \frac{[(1 - w_{I})(m_{i}/m_{f}) - F_{S}(1 - w_{F})]A_{U}}{F_{S}(1 - w_{F})A_{O}}$$

- Assumptions:
 - Standard measurement procedure
 - Neglected uncertainty components with small contribution (< 0.01%)

Measurement uncertainty for ²³⁵U enrichment analysis (u(w₂₃₅))

- Assumptions:
 - Standard measurement procedure
 - Different detector types for isotopes (FC: ²³⁵U, ²³⁸U, SEM: ²³⁴U, ²³⁶U)

10110111111111111

 $\frac{\frac{238}{238}(m)RC_{23x}(c)\delta(Y)\delta(L)\delta(F)}{RC_{23x}(c)}$

 $(RS_{235}(m)RC_{235}(c))$

 $RC_{235}(m)$

238

 $R_{23x/238}$

RB235

- Benchmark case setup for evaluating correlation factors
 - Compared u(M(PE)) contribution between "with correlation" and "without correlation"

13

• KINAC's DA results were applied to quantify relative total, rand., sys. uncertainty (δ , δ_r , δ_s)

Relative uncertainty of weighing using EBAL

- Repeated measurement for 1 g sample
- Constant temperature and pressure
- Calibration using 1 g standard mass

δ(m)	u(m)	m	X (rand)	f_b (rand)	f_c (sys)
1.014E-04	1.014E-04	1.0000	1.0001	1.0000	1.0000
δ_r(m)	u_r(m)	nu(m)	u(X)	u(f_b)	u(f_c)
9.279E-05	9.279E-05	3.4909	9.280E-05	8.476E-08	4.082E-05
δ_s(m)	u_s(m)		c(X)	c(f_b)	c(f_c)
4.082E-05	4.083E-05		1.0000	1.000	1.000
			cont(X)	cont(f_b)	cont(f_c)
			8.378E-01	6.992E-07	1.622E-01

.....

Relative uncertainty of weighing using GRAV

- Oxidation of 1.4 g pure UO_2 sample
- External weighing of initial sample mass
- Measurement of Δm before & after oxidation

δ(f_U)	u(f_U)	f_U	u_r(mi/mf)	u(w_l)	u(w_F)	u(w_235)
6.939E-04	6.116E-02	8.814E+01	6.672E-04	2.125E-05	5.952E-06	6.300E-05
δ_r(O/U)	u_r(f_U)	nu(f_U)	c(mi/mf)	c(w_l)	c(w_F)	c(w_235)
6.939E-04	6.116E-02	1.5280E+01	17.5308	-16.8669	16.8664	0.0072
			cont_r(mi/mf)	cont(w_l)	cont(w_F)	cont(w_235)
			9.990E-01	9.382E-04	7.359E-05	1.511E-09
δ_s(O/U)	u_s(f_U)		u_s(mi/mf)	- 114 S		
1.101E-06	9.707E-05		1.060E-06	Million -		
			c(mi/mf)			
			17.5308			
			cont_s(mi/mf)			
			2.519E-06		ill and the	

Relative uncertainty of weighing using TIMS

- Measuring 3.4 wt% UO₂ sample
- Measurement of sample
- Adjustment of isotopic ratio using a CRM
- FC for ^{235,238}U, SEM for ^{234,236}U

δ(w_235)	u(w_235)	w_235	u_r(R234/238)	u_r(R235/238)	u_r(R236/238)		
5.154E-04	1.747E-05	3.389E-02	6.866E-06	1.879E-05	1.849E-08		
δ_r(w_235)	u_r(w_235)	nu(w_235)	c(R234/238)	c(R235/238)	c(R236/238)		
5.109E-04	1.731E-05	5.458E+01	-0.03218	-0.92128	-0.03246		
			cont(R234/238)	cont(R235/238)	cont(R236/238)		
			1.600E-04	9.823E-01	1.180E-09		
δ_s(w_235)	u_s(w_235)		u_s(R234/238)	u_s(R235/238)	u_s(R236/238)		
6.826E-05	2.314E-06		2.959E-07	2.500E-06	2.508E-08		
			c(R234/238)	c(R235/238)	c(R236/238)		
			-0.03218	-0.92128	-0.03246		
			cont(R236/238)				
			1.754E-02				

Effect of correlation factors for MBE

- Comparing u(M) between "with" and "without correlation"
 - Significant difference(~15%) between total uncertainty of M(²³⁵U) in a BHF

VS.

	J.C. 1	Η	u r(M)	Contribution				
İ		۲	0.180	0.707				
			0.100	0.707	u r(PD)	Contribution		
					0.172	0.909		
							u_r(PD(m))	Contributio
							0.018	0.011
							u_r(PD(f_u))	Contributio
							0.138	0.641
							u_r(PD(w_235)	Contributio
							0.101	0.348
					u_r(PL)	Contribution		
					0.054	0.091		
							u_r(PL(m))	Contributio
							0.006	0.011
							u_r(PL(f_u))	Contributio
							0.044	0.641
							u_r(PL(w_235))	Contributio
							0.032	0.348
			u_s(M)	Contribution				
			0.116	0.293				
							u_s(EBAL_PD)	Contributio
							0.081	0.202
							u_s(GRAV_PD)	Contributio
							0.002	0.000
							u_s(TIMS_PD)	Contributio
							0.014	0.006
							u_s(EBAL_PL)	Contributio
							0.081	0.202
							u_s(GRAV_PL)	Contributio
	۸ <i>۱</i> :۲۱-	_					0.002	0.000
	vvitn	С	orre	ation			u_s(TIMS_PL)	Contributio

Effect of correlation factors for MBE

- Contribution of uncertainty components between "with" and "without correlation"

Effect of correlation factors for MBE

- Contribution of uncertainty components between "item level" and "facility level"
 - The contribution of correlation factors becomes significant in facility level

	Uncertainty contribution (%)					
	Single	eitem	Entire BHF			
	Rand.	Sys.	Rand.	Sys.		
EBAL	83.78	16.22	4.91	95.09		
GRAV	99.99	0.01	99.97	0.03		
TIMS	98.25	1.75	98.25	1.75		
Total	99.77	0.23	70.68	29.32		

- The propagation of uncertainty in GUM contains correlation factors
- It has usually been neglected in lab-scale analytical procedures due to its small contribution to total uncertainty
- However, the effect of correlation factors becomes significant if the large number of items are accumulated and highly correlated
- Therefore, the effect of correlation has to be considered in the measurement of material balance in a large bulk handling facility
- Future works will demonstrate the effect of the entire material balance evaluation

Q&A (haneol@kinac.re.kr)