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1. Introduction 

 
A simple program based on a stochastic method is 

developed for solving the reactor point kinetic 

equations(PKEs) coupled with a simplified T/H feedback 

model. Most of the existing programs solving the PKEs 

utilizes the deterministic methods such as Runge-Kutta 

method[1] or CRAM[2], etc. In this paper, we introduce 

stochastic algorithm based on the kinetic Monte 

Carlo(KMC) method. The main advantage of the KMC 

lies in that it is simple and easy to implement. But, the 

longer running time and stochastic errors are inevitably 

involved.  

In the subsequent chapters, we present a brief 

description about the methodology employed in the code 

and the numerical results for a test problem is provided. 

The calculated results are compared with the ones 

obtained using the deterministic method. 

 

2. Method of solution 

 

The PKEs is a 0-D model which gives a transient 

behavior of the nuclear power reactor. The feedback 

mechanism oriented from the fuel and coolant 

temperatures variations makes the equations nonlinear. 

The basic PKEs take the following form when we assume 

six groups of delayed neutron precursors: 
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And the simplified feedback mechanism[3] coming 

from the fuel and coolant temperatures can be written as: 

 
𝜌 = 𝜌0 + 𝛼𝑇

𝐶(𝑇𝐶 − 𝑇𝐶,𝑟𝑒𝑓) + 𝛼𝑇
𝐹(𝑇𝐹 − 𝑇𝐹,𝑟𝑒𝑓),  (3) 

 

𝑚𝐹𝑐𝑝𝐹
𝑑𝑇𝐹

𝑑𝑡
= 𝑎𝐹𝑛 − ℎ(𝑇𝐹 − 𝑇𝐶),  (4) 

 

𝑚𝐶𝑐𝑝𝐶
𝑑𝑇𝐶

𝑑𝑡
= ℎ(𝑇𝐹 − 𝑇𝐶) − 2𝑊𝐶𝑐𝑝𝐶(𝑇𝐶 − 𝑇𝐶𝑖𝑛),  (5) 

 

where 𝑇𝐶,𝑟𝑒𝑓  and 𝑇𝐹,𝑟𝑒𝑓  are the reference temperatures 

of coolant and fuel for reactivity changes, 𝛼𝑇
𝐹 and 𝛼𝑇

𝐶 are 

the reactivity temperature coefficients, 𝑚𝐹 and 𝑚𝐶  are 

the mass of fuel and coolant in the core, 𝐶𝑝𝐹 and 𝐶𝑝𝐶 are 

specific heat of fuel and coolant, ℎ is the heat transfer 

coefficient between fuel and coolant, 𝑊𝐶 is the coolant 

mass flow rate and 𝑇𝐶𝑖𝑛  are the coolant inlet 

temperatures, 𝑎𝐹  is the power conversion factor for 

neutron density. 

The above equations can be rewritten in the matrix-

vector form in the following way: 

 
𝑑

𝑑𝑡
�⃗� = 𝑨�⃗� + �⃗⃗�,  (6) 

 

where �⃗� is the state vector defined as  

 

𝑋 = (𝑛, 𝐶𝑖 , 𝑇𝑓 , 𝑇𝑚), 𝑖 = 1,⋯ ,6,  (7) 

 

and 𝚨 and �⃗⃗� are the corresponding coefficient matrix 

and vector. 

In KMC, the state vector �⃗� is regarded as a random 

variable. And it assumes that the state of the system 

follows the Poisson process. Then we can construct the 

balance equation for the probability density function for 

�⃗� at time 𝑡. Thanks to Shim’s work[4], we can find a 

mathematical formula of the KMC algorithm using the 

Neumann series solution of the balance equation. Based 

on the mathematical solution, the KMC algorithm for 

solving PKEs is given in the following way: 

 

1) Set the time 𝑡 = 0 and prepare for an initial state 

�⃗�(𝑡 = 0). 
2) Make the list of all kinds of events which can 

happen in the current state 𝑖  and calculate their 

transition rates 𝑘(�⃗�𝑖 → �⃗�𝑗). 

3) Calculate the total transition rate by accumulating 

all transition rates, 𝑘𝑖 = ∑ 𝑘(�⃗�𝑖 → �⃗�𝑗)𝑗 . 

4) Update the current time 𝑡𝑗 = 𝑡𝑖 + ∆𝑡𝑖𝑗 , where 

∆𝑡𝑖𝑗 = − log 𝜉 𝑘𝑖⁄  and 𝜉  is a uniform random 

number 𝜉 ∈ (0,1]. 
5) Select an event randomly from the event list using 

its transition rates. Carry out the selected event 

and find the next state.  

6) Return to step 2 until the simulation time is over. 

 

For applying the KMC algorithm to the PKEs, every 

term consisting of the coefficient matrix 𝑨 and �⃗⃗� can be 

thought as an independent event. Then all transition rates 

at the time 𝑡 in the state 𝑖 can be evaluated using 𝑨�⃗�𝑖 +

�⃗⃗�. 

3. Numerical results 
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We introduce a test problem provided in the reference 

book[3] to test the code. The following parameters are 

used in the calculation.  

 

Table 1 PKE kinetic parameters for test problem 
Group number 𝛽𝑖  𝜆𝑖 

1 0.000215 0.0124 

2 0.001424 0.0305 

3 0.001274 0.111 

4 0.002568 0.301 

5 0.000748 1.14 

6 0.000273 3.01 

𝛽=0.006502, Λ=0.001 

 

Table 2 T/H parameters for test problem 

Parameter Unit Value 

𝑚𝐹 𝐾𝑔 40000 

𝑚𝐶 𝐾𝑔 7000 

𝐶𝑝𝐹 𝐽𝐾𝑔−1𝐾−1 200 

𝐶𝑝𝐶 𝐽𝐾𝑔−1𝐾−1 4000 

𝛼𝑇
𝐶  𝐾−1 -0.00001 

𝛼𝑇
𝐹  𝐾−1 -0.00001 

𝑊𝐶  𝐾𝑔𝑠−1 8000 

𝑎𝐹 𝐽𝑚3𝑠−1 7 × 106 

ℎ 𝐽𝐾−1𝑠−1 4 × 106 

𝑇𝐶,𝑟𝑒𝑓 𝐾 600 

𝑇𝐹,𝑟𝑒𝑓 𝐾 900 

 

The fuel temperature(𝑇𝐹 ) and coolant temperature(𝑇𝐶 ) 

are specified as 900K and 600K in the initial condition. 

 

 

Figure 1 Reactivity insertion of test problem 

It is assumed that the stepwise reactivity insertion as 

much as 0.01 happens at 110 sec during 10 sec and the 

scram follows for shutdown of the reactor. The KMC 

simulations are repeated 10 times to evaluate statistical 

error at each time steps. We use 4th order Runge-Kutta 

method to find the reference solution.  

Figs 2 and 3 show the comparison of the results for the 

neutron density and fuel temperature. It shows the results 

of KMC simulation always include the reference solution 

obtained from the deterministic method. 

The size of the error bars depends on the scaling 

factors introduced in the actual implementation in the 

following way: 

 

𝑐
𝑑

𝑑𝑡
�⃗� = 𝑐𝑨�⃗� + 𝑐�⃗⃗�, 

 (8) 

 

where the multiplication factor 𝑐  denotes the scaling 

factor. In this simulation, c is specified as 1000. In terms 

of computing time, KMC shows ~400 secs per a single 

run for each problem which is ~100 times larger than the 

4th order Runge-Kutta method. 

 

4. Conclusions 

 

Simulation techniques using KMC can be alternative 

tool for predicting the transient behavior of the nuclear 

power reactor. In order to find the feasibility of the KMC 

method, we solved the simple test problem coupled with 

T/H feedback model. It shows they have a good 

agreement with each other.  
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Figure 2 Comparison of time evolution of neutron 

density for test problem between KMC and 4th order 

Runge-Kutta 

 

 
Figure 3 Comparison of time evolution of fuel 

temperature between KMC and 4th order Runge-Kutta 
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