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1. Introduction 

 
In nuclear power plants (NPPs), abnormal states may 

occur for various reasons. In the abnormal states, the 

operators perform state diagnosis and mitigation action 

according to established procedures to restore the 

integrity of the NPPs. Mistakes or failures in operator 

actions can further deteriorate the state of the NPPs. If 

the state of the NPPs continues to deteriorate, it may 

lead to a shutdown of the reactor by the safety systems. 

In this study, an unplanned reactor shutdown is defined 

as a trip. A general reactor shutdown is carried out over 

a long period of time by a planned procedure. The 

occurrence of the trip may cause the failure of many 

facilities constituting the NPPs and may cause 

economic losses due to the shutdown of the NPPs. 

Therefore, the tasks of operators in abnormal states can 

be very burdensome. 

Accordingly, many researchers have been conducting 

research on operator support systems using artificial 

intelligence (AI) [1, 2]. The operator support system 

aims to assist operators in their decision-making and 

tasks through various functions, which include anomaly 

detection, diagnosis, and prediction. 

In this paper, we propose an algorithm to predict the 

remaining trip time (RTT) as a part of the operator 

support system function, which provides information on 

the remaining time until the trip when an abnormal state 

occurs. The algorithm incorporates a diagnosis function 

that identifies scenarios for abnormal states of NPPs. 

RTT prediction is then performed for the diagnosed 

scenario, utilizing the concept of remaining useful life 

prediction. The diagnosis and RTT prediction functions 

are implemented using a light gradient boosting 

machine (LightGBM) method. 

The proposed algorithm enables the development and 

utilization of the RTT prediction model for each 

scenario, and it is expected to demonstrate high 

performance. The high performance RTT prediction 

information is expected to support operators in planning 

operations and carrying out safe mitigation actions 

during abnormal states of NPPs.  

 

2. Light Gradient Boosting Machine 

 

In this study, LightGBM, which shows good 

performance in various fields as an AI method, was 

used. LightGBM is a tree-based learning algorithm that 

uses a gradient boosting machine framework [3]. The 

conventional gradient boosting machine requires 

calculating all feature instances for all features to 

estimate the information gain of all possible tree split 

points. Consequently, there is a problem that learning 

takes a long time. To improve the above problems, 

LightGBM utilizes two techniques: gradient-based one 

side sampling (GOSS) and exclusive feature bundling 

(EFB). GOSS selects instance with large gradients as 

fixed, while randomly excludes instances with small 

gradients. In other words, GOSS enhances learning 

efficiency by sampling data based on the gradients. 

EFB is a technique to reduce feature size by grouping 

mutually exclusive features. Therefore, EFB can reduce 

the complexity of the model and shorten the learning 

time. Additionally, the LightGBM uses a leaf-wise tree 

segmentation method, which segments the tree into leaf 

units more efficiently than the conventional level-wise 

method. This can improve learning speed and reduce 

memory usage. Fig. 1 shows the structure of level-wise 

and leaf-wise methods. 
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 Fig. 1. The structure of level-wise and leaf-wise tree methods 

[4]. 

 

3. Data Processing  

 

3.1 Data Collection 

 

In this study, the training and test data for diagnosis 

and RTT prediction models were collected using the 

compact nuclear simulator (CNS). The CNS was 

developed by the Korea Atomic Energy Research 

Institute for the purpose of system education referring 

to the design of Westinghouse-993Mwe Kori NPP units 

3 and 4 [5]. In the CNS, abnormal scenarios can be 

simulated by injecting various malfunctions. In this 

study, data were collected for 8 abnormal scenarios 
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regarding instrument error, equipment abnormalities, 

and pipe leakage, as well as normal data. Additionally, 

data were collected up to the point where no action was 

taken by the user and the trip occurred. The scenario 

information of the collected data is shown in Table Ⅰ. 

 

Table I: Collected Scenario List 

No. Scenario name 

0 Normal 

Instrument error 

1 Pressurizer pressure channel failure (High) 

2 Pressurizer level channel failure (Low) 

3 Steam generator level channel failure (High) 

Abnormalities in equipment 

4 Pressurizer PORV opening 

5 Pressurizer safety valve failure 

6 Pressurizer spray valve failed opening 

Pipe leakage 

7 Leakage from CVCS to CCW 

8 Steam generator u-tube leakage 
⋇  CVCS: Chemical and volume control system 

⋇  CCW: Component cooling water system 

⋇  PORV: Pressurizer power-operated relief valve 

 

3.2 Data Pre-Processing 

 

In AI learning, variable selection is one of the 

important tasks. If there are many unnecessary variables, 

the impact of each variable may not be reflected 

properly during the AI learning process. This can 

complicate AI learning and potentially lead to a decline 

in performance. Accordingly, in this study, 152 

variables were selected and utilized from among 2,222 

variables in the CNS data.  

 

4. Implementation of RTT Prediction Algorithm 

 

4.1 RTT Prediction Algorithm 

 

The RTT prediction model was developed for each 

scenario to achieve high performance prediction. To 

utilize the individually developed prediction model for 

each scenario, the diagnosis function must be preceded. 

So, in this study, an RTT prediction algorithm that 

utilizes the diagnosis function was developed. The 

algorithm is divided into data pre-processing, abnormal 

scenario diagnosis function, and RTT prediction 

function. Through the diagnosis function, the abnormal 

scenario of the NPPs is determined, and the 

corresponding RTT model is utilized. If the diagnosis 

result indicates the normal state, the RTT value is fixed 

in 1,800 seconds through post-processing. This is 

because the collected data are the data in which the trip 

occurred within 1,800 seconds. Fig. 2 shows the 

schematic diagram of the algorithm used for RTT 

prediction. 
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Fig. 2. Schematic diagram of the RTT prediction algorithm. 
 

4.2 Diagnosis Function Result 

 

The diagnosis function is evaluated using the test 

data. Evaluation includes accuracy score calculation 

and confusion matrix schematization. The confusion 

matrix provides a comparison between AI’s predicted 

results and actual true answers. This allows for the 

identification of areas where the AI’s learning may be 

insufficient. Fig. 3 shows the confusion matrix of the 

diagnosis model test result. As a result of the 

performance evaluation, it was confirmed that the 

accuracy score was 100% for all scenarios. The 

accuracy score is calculated by the Eq. (1). 

 

number of correctly predicted data
Accuracy score

number of total data
=  (1) 
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Fig. 3. Confusion matrix representing test result of diagnosis 

function. 

 

4.3 RTT Prediction Function Result 

 

LightGBM has numerous hyperparameters and can 

be optimized by tuning them. In this study, optimization 

was performed by adjusting the learning rate, maximum 

depth (max depth), and number of leaves (num leaves) 

among the hyperparameters, and early stopping 

technology was used. The performance of the optimized 

models was evaluated using the root mean squared error 

(RMSE). Eq. (2) represents the expression for 

calculating RMSE. Additionally, Table Ⅱ shows the 

hyperparameter information and RMSE scores of the 

RTT prediction model developed for each scenario. 

 

2

1

1
( )

N i i

actual predi
RMSE y y

N =
= −  (2) 

where, 
actualy  and 

predy  are actual and predicted values, 

respectively. N  is the total number of datasets. 

 

Table Ⅱ: RTT Prediction Model Information for Each 

Developed Scenario 

Scenario 

No. 

Learning 

Rate 

Max 

Depth 

Num 

Leaves 
RMSE 

1 0.01 5 25 0.0025 

2 0.02 7 49 0.0077 

3 0.01 5 25 0.0056 

4 0.02 4 14 0.2369 

5 0.01 6 36 0.0194 

6 0.03 7 49 0.2658 

7 0.01 4 16 0.0856 

8 0.02 7 49 0.0328 

 

Additionally, for performance comparison, the 

RMSE score of the model trained across all the above 

scenarios (i.e., scenarios from no.1 to no.8) was 

calculated. The RMSE was calculated as 0.3049 when 

the learning rate, max depth, and num leaves were 0.01, 

5, and 25, respectively. This confirms that the 

prediction models developed for each scenario showed 

high performance. 

 

4.4 Experiment 

 

The pressurizer safety valve failure scenario (i.e., 

scenario number 5) data were used as a test experiment 

for the RTT prediction algorithm. For this data, a 

malfunction signal (e.g., pressurizer safety valve failure 

signal) at 30 seconds, and the trip occurs at 222 seconds. 

It means that the first 30 seconds are normal states, and  

then abnormal states. Fig. 4 shows the diagnosis 

result of the diagnosis, demonstrating successful 

diagnosis directly to scenario 5 when a malfunction is 

injected. Fig. 5 shows the results of the RTT prediction 

algorithm. In the figure, the orange dotted line indicates 

the malfunction injection time, the blue line represents 

the predicted RTT, and the red line represents the actual 

RTT. The blue box shows an enlarged view of the 

prediction result after the malfunction was injected. As 

a result of the experiment, all RTT prediction values 

exhibited high prediction performance within a 5% 

error margin. 

 

 
Fig. 4. Diagnosis result in pressurizer safety valve failure 

scenario. 

 

 
Fig. 5. Prediction result of remaining trip time in pressurizer 
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safety valve failure scenario. 

 

5. Conclusions 

 

In this study, we proposed the algorithm to predict 

the remaining trip time (RTT) as part of the operator 

support system function in NPPs. The algorithm 

consists of the diagnosis function and prediction 

function, and the LightGBM method was used. The 

diagnosis function provides the current scenario state of 

the NPPs. The prediction models have been developed 

individually for each scenario, and accordingly, the 

prediction function uses a model of the diagnosed 

scenario among the developed prediction models. The 

single prediction model developed individually for each 

scenario is simpler than a model trained on all scenarios 

and allows for high performance predictions. 

Additionally, as the results of test and experiment, the 

diagnosis function showed 100% accuracy, and the 

prediction function also shows RTT prediction within 

5% margin of error. 

However, in this study, relatively simple diagnosis 

and prediction were performed for 8 distinct abnormal 

scenarios with clear characteristics. In future work, we 

plan to collect a more diverse set of abnormal scenario 

data. In addition, we plan to perform RTT prediction by 

collecting data that includes user actions. It is expected 

that the RTT value will increase when appropriate 

actions are taken and, conversely, the RTT value will 

decrease when incorrect actions are taken. As a result, 

the predicted RTT values represent the state of the 

NPPs and are expected to be helpful for the mitigation 

task. 
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