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1. Introduction 
 

In contrast with the deterministic transport solution, 
the Monte Carlo (MC) method has several advantages 
including continuous energy cross-section treatment, on-
the-fly doppler broadening, and complicated geometry 
consideration without any assumption. With drastic 
improvements in the computing resources, the MC 
calculation is also gaining attention for being applied to 
multi-physics and transient reactor analysis [1-2]. 
However, one intricacy still remains for MC calculation, 
which is the evaluation of adjoint flux distribution for the 
steady-state reactor problem. Direct solution of adjoint 
angular flux balance equation (e.g., backward approach) 
not only requires additional computing burden but also 
becomes complicated considering the inversion of 
scattering laws used in continuous-energy-angle particle 
transport [3]. 

Although the direct assessment of adjoint flux 
information is not straightforward, still acquisition of 
such information becomes useful for calculating the 
effective kinetic parameters. Hence, an indirect approach 
referred to as the Iterated Fission Probability (IFP) 
method has been envisioned which allows tallying 
adjoint flux-weighted variables over the whole phase-
space [4]. Such a method does not require the direct 
calculation of adjoint flux for tallying effective kinetic 
parameters and has been successfully implemented for 
various MC codes including the iMC code developed in 
Korea Advanced Institute of Science and Technology 
(KAIST) [5-6]. 

In addition to the calculation of adjoint-weighted 
parameters, the distribution of adjoint flux can be also 
estimated using the IFP scheme in a mesh-wise scheme. 
Such a method has proven to be successful for 
multigroup slab reactors [7-8]; however, has not been 
thoroughly demonstrated for either 2-dimensional or 
continuous energy problems. Hence, in this paper, both 
the evaluation of effective kinetic parameters and mesh-
wise adjoint flux distribution is discussed using the iMC 
Monte Carlo code. Especially, the applicability of the 
IFP approach for assessing the adjoint information is 
highlighted. 
 

2. Iterated Fission Probability (IFP) Method 
 

The adjoint flux can be interpreted as the importance 
of particles produced at a certain phase-space 
𝜃𝜃 (𝑟𝑟0,Ω��⃗ 0,𝐸𝐸0) contributing to fission reactions. Since the 
fission source distribution eventually converges for the 

steady-state reactor problem, mathematically, the extent 
of fission reaction(s) originating from a source neutron 
at a certain phase-space would also converge. Based on 
such interpretation, the Iterated Fission Probability (IFP) 
is defined to be the asymptotic number of fission 
neutrons stemming from the neutron at phase-space 𝜃𝜃, 
which is mathematically identical to adjoint flux. Note 
that IFP quantity can also be represented using the total 
number or energy released due to fission events [4]. 

In practice, the IFP value associated with a certain 
source neutron reaches its asymptotic value after passing 
a certain number of cycles, which is referred to as a latent 
cycle (L). The original source for emitting the neutron is 
referred to as progenitor and the resulting fission 
neutrons over the cycles are referred to as progenies. By 
scoring the origin-related information, e.g., phase-space 
information where the neutron has been born, whilst 
banking the cycle-wise fission source distribution, the 
IFP quantity can be estimated. 

The tallied IFP information is then used for calculating 
the effective kinetic parameters. Note that the integration 
is performed over the whole reactor volume, i.e., point 
reactor model. 

 
- Effective delayed neutron fraction (𝛽𝛽𝑑𝑑) 
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- Effective generation time (Λ) 
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where 𝜑𝜑†  is the adjoint flux estimated via IFP, 𝜒𝜒(𝐸𝐸) 
denotes the fission spectrum, 𝐹𝐹𝐹𝐹 represents the fission 
operator applied to the angular flux, and all the other 
notations are that of the convention. 
 

 ' ' ' ' '( , , ) ( , ) ( , , ).fF r E d dE r E r Eϕ νσ ϕΩ = Ω Ω∫ ∫
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Being similar to tallying the effective kinetic 
parameters, where the integration is performed for the 
whole reactor volume, the adjoint weighted integration 
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can be conducted for a specific phase-space of interest. 
Hence, a mesh-based description of an adjoint weighted 
variable can be obtained, retaining representative 
position and energy dependency corresponding to the 
postulated specific phase-space of interest. 
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where subscript r denotes the phase-space of interest in 
which the integration is performed and its corresponding 
node index is denoted as i (See Fig. 1). 
 

 
Fig 1. Mesh-based tallying of adjoint flux distribution. 

 
The numerator of Eq. (4) is tallied as below: 
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where C is an arbitrary constant corresponding to the 
attributes of the detector response function, and subscript 
p represents the progenitor. The weight w0 corresponds 
to the initial weight of the particle born from the 
progenitor and ls is the track length of the progeny that 
results in a fission reaction for its asymptotic population, 
and all the other notations are that of the convention. The 
denominator on the contrary, can be easily tallied using 
the track-length estimator 
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where the summation is performed over all particle 
tracks Τ  residing within the phase-space of interest 
denoted as r. 

It must be bluntly mentioned that Eq. (4) does not 
guarantee an exact representation of the adjoint flux 
distribution. It is obvious that a flat profile concerning 
the forward flux is necessary to attain reasonable 
estimation of the adjoint flux distribution. The effect of 
such an intrinsic issue on the reliability of the tallied 
adjoint flux distribution will be thoroughly investigated 
in the following section. 

 
 

3. Numerical Results 
 
As aforementioned, the IFP method for evaluating 

effective kinetic parameters and adjoint flux distribution 
has been implemented in the iMC code. For the 
validation of tallying effective kinetic parameters, 
comparison have been made with respect to the validated 
Serpent 2 MC code for critical benchmark configurations 
[9]. Tables 1 to 3 summarizes the evaluated effective 
kinetic parameters for GODIVA, JEZEBEL, and 
FLATTOP23 benchmarks. All the presented iMC 
calculation postulated 8 latent cycles with 50 inactive, 
500 active, and 200,000 histories per cycle. The Serpent2 
calculation utilized 50 inactive, 500 active, and 500,000 
histories per cycle with ENDF/B-VII.1 library. One 
could observe that the numerals from two different codes 
well resemble each other. 

 
Table 1. GODIVA benchmark result 

Values Serpent2 iMC 
keff [-] 0.99979 (5.6) 0.99976 (7.4) 
𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 [pcm] 649.2 (2.8) 647.6 (2.6) 
𝛽𝛽1 [pcm] 23.0 (0.5) 23.2 (0.5) 
𝛽𝛽2 [pcm] 115.2 (1.2) 117.1 (1.1) 
𝛽𝛽3 [pcm] 112.9 (1.2) 112.0 (1.1) 
𝛽𝛽4 [pcm] 249.4 (1.8) 246.4 (1.6) 
𝛽𝛽5 [pcm] 104.3 (1.1) 104.8 (1.1) 
𝛽𝛽6 [pcm] 44.3 (0.7) 44.1 (0.7) 
Λ [10-9 s] 5.70 (0.00) 5.69 (0.00) 

 
Table 2. JEZEBEL benchmark result 

Values Serpent2 iMC 
keff [-] 1.00007 (6.5) 1.00003 (8.5) 
𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 [pcm] 184.0 (1.7) 183.3 (1.5) 
𝛽𝛽1 [pcm] 6.6 (0.3) 6.8 (0.3) 
𝛽𝛽2 [pcm] 43.6 (0.8) 43.3 (0.7) 
𝛽𝛽3 [pcm] 32.6 (0.7) 32.5 (0.6) 
𝛽𝛽4 [pcm] 60.8 (1.0) 61.0 (0.9) 
𝛽𝛽5 [pcm] 30.1 (0.7) 30.5 (0.6) 
𝛽𝛽6 [pcm] 10.5 (0.4) 9.9 (0.3) 
Λ [10-9 s] 2.88 (0.00) 2.87 (0.00) 

 
Table 3. FLATTOP23 benchmark result 

Values Serpent2 iMC 
keff [-] 0.99902 (6.7) 0.99913 (7.5) 
𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 [pcm] 371.5 (2.2) 364.0 (2.1) 
𝛽𝛽1 [pcm] 25.5 (0.6) 24.9 (0.6) 
𝛽𝛽2 [pcm] 73.3 (1.0) 71.2 (0.9) 
𝛽𝛽3 [pcm] 61.2 (0.9) 61.0 (0.9) 
𝛽𝛽4 [pcm] 131.4 (1.3) 130.4 (1.3) 
𝛽𝛽5 [pcm] 58.5 (0.9) 55.5 (0.9) 
𝛽𝛽6 [pcm] 21.7 (0.5) 21.1 (0.6) 
Λ [10-9 s] 12.57 (0.02) 12.59 (0.02) 

 
Figure 2 exhibits the latent cycle-wise variation in the 

tallied effective delayed neutron fraction concerning the 
FLATTOP23 benchmark, where asymptotic behaviour 
can be seen as expected. 
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Fig 2. Variation in the effective delayed neutron fraction 
for FLATTOP23 benchmark problem. 
 

 
Fig 3. Aggregation of fuel assemblies (2x2 configuration) 
 

To scrutinize the applicability of Eq. (4) for 
estimating adjoint flux distribution, a 2x2 aggregation of 
fuel assembly have been considered as shown in Fig. 3. 
Mathematically, it is known that for 1-group reactor 
problem, the forward and adjoint fluxes become identical. 
For the case of having a whole reflective boundary 
condition, the evaluated 1-group adjoint flux distribution 
became flat regardless of the mesh size involved in 
tallying (not shown in this manuscript). 

However, by imposing vacuum boundary conditions 
as shown in Fig. 3, the tallied 1-group forward and 
adjoint flux distributions became different. Figures 4 to 
6 juxtapose the tallied forward and adjoint fluxes with 
variation in the mesh size. It can be seen that difference 
dwindles with an increase in the number of nodes. All the 
calculation utilized 100 inactive, 300 active, and 100,000 
histories per cycle. The uncertainty value for each node 
was small and was excluded in the cartoons for brevity. 
 

 
Fig 4. Adjoint flux calculation (1x1 assembly division). 

 
Fig 5. Adjoint flux calculation (2x2 assembly division). 

 

 
Fig 6. Adjoint flux calculation (4x4 assembly division). 

 
In addition, by taking average with respect to each 

assembly for the tallied adjoint flux distribution, having 
4x4 assembly division resulted in the closest agreement 
with respect to the 1x1 assembly division forward flux 
calculation result.  
 

 
Fig 7. Condensation of tallied adjoint flux distribution. 

 
As expected, it can be seen that the applicability of 

Eq. (4) for assessing adjoint information is rather weak 
for fringe nodes facing vacuum boundaries, i.e., 
relatively large variation in the forward flux. 
Nevertheless, by having a reasonable mesh size, still, 
reliable adjoint flux estimation can be made.  

For multi-group adjoint calculation, the TWIGL two-
group benchmark reactor has been considered. Figure 8 
depicts the problem layout. To calculate the reference 
adjoint flux distribution, the discrete ordinate method (SN) 
has been employed with a Level Symmetric Quadrature 
set of N = 20. Table 4 compares the calculated 
multiplication factors from two different approaches, 
where 0.8 cm x 0.8 cm mesh was used for the SN 
calculation.  
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Fig 8. Two-group TWIGL benchmark layout 

 
Table 4. Multiplication factors for TWIGL benchmark 

Source Multiplication Factor 
SN (N=20) 0.91624 

iMC 0.91605 ± 3.1 
 

Figure 9 depicts the tallied mesh-wise thermal-group 
adjoint flux distribution using the IFP method, where the 
size of each node is set to 8 cm x 8 cm. For comparison, 
the S20 calculation result is also tabulated, where ‘average’ 
indicates a direct average of fine-mesh wise adjoint flux 
values and ‘condense’ refers to adjoint weighted 
aggregation according to Eq. (4). Note that the 
uncertainty of IFP-based values for each node is about 
0.01 for all cases. It could be concluded that all the 
presented numerals do correspond with each other, 
attesting to the applicability of the IFP method for 
appraising the adjoint flux distribution. 
 

 
 
Fig 9. Calculated mesh-based thermal-group adjoint flux 
distribution for TWIGL benchmark. 
 
 

4. Conclusions 
 

This work presents the overall description of Iterated 
Fission Probability (IFP) method for assessing effective 
kinetic parameters and adjoint flux distribution 
information implemented in the iMC Monte Carlo code. 
To validate the calculation of effective kinetic 
parameters, several critical benchmarks were solved and 
the results were compared with the Serpent2 calculation. 
For assessing the applicability of the IFP method for 
tallying adjoint flux distribution, 2x2 fuel assembly 
configuration and the TWIGL benchmark were solved. 
Especially, it was found that acceptable adjoint flux 
values can be estimated using moderate-sized nodes for 
tallying. 
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