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1. Introduction 

 

Pool-type sodium-cooled fast reactors (SFR) were 

investigated by Korea Atomic Energy Research Institute 

(KAERI) since 1990’s, and based on the accumulated 

SFR technology the Specific Design Safety Analysis 

Report (SDSAR) had been issued according to the 

specific design of Proto-type Gen-IV SFR (PGSFR) in 

2017 [1]. Currently long-term sustainable small modular 

reactors are attracting attentions worldwide, which are 

designed to maximize the utilization of uranium 

resources using fast neurons. Now KAERI is carrying 

out a conceptual design of SALUS (Small, Advanced, 

Long-cycled and Ultimate Safe SFR) under the PGSFR 

design experience. 

Previously a preliminary analysis of the performance 

of the PDHRS loop was performed using the MARS-

LMR code [2] to analyze the design value of the DHX 

and AHX heat exchanger and to support its basic design 

with the STELLA-2 facility. The code calculation 

results for DHX were in good agreement with the design 

values, however, the code calculation results for AHX 

show under-prediction compared with the design values 

[3]. Also it is noted that the GAMMA+ code [4] is 

validated using sodium thermal-hydraulic separate 

effect test data [5] including AHX and DHX. 

In this paper, a preliminary modeling on passive 

decay heat removal system (PDHRS) of SALUS was 

performed using the GAMMA+ code to analyze the 

design values of the DHX and AHX heat exchangers. 

 

2. Design Features of SALUS PDHRS 

 

2.1 Conceptual Design of SALUS 

The SALUS core is being designed with a cycle 

length of 20 years with 100 MWe power. The key 

design limit of the fuel rod is determined by the 

Cumulative Damage Fraction (CDF), which should be 

kept less than 0.05 as PGSFR. Since CDF is a function 

of cladding temperature, fuel rod internal pressure, and 

burn-up, in order to ensure the fuel rod integrity for 

extended cycle length, the coolant inlet/outlet 

temperatures were set lower than those of PSGFR. The 

long cycle length can be achieved by lowered power 

density, and the conversion of isotopes, fertile to fissile, 

through high neutron economy. Some of major design 

parameters and characteristics can be found in Table 1. 

 

Table 1 Major Design Parameters of PGSFR and 

SALUS 
Design Parameters PGSFR SALUS 

Thermal power 392.2 MWth 

(150 MWe) 

268 MWth  

(100 MWe) 

Design limit CDF < 0.05 CDF < 0.05 

Coolant Inlet/Outlet 

Temperature 

390 / 545 ℃ 360 / 510 ℃ 

SG Inlet/Outlet 

Temperature 

230 / 503 ℃ 240 / 454 ℃ 

EFPDs 290 days 7300 days 

Fuel type U-10Zr U-10Zr 

Active core height 90 cm 150 cm 

Avg. Discharge 

Burnup 

65.941 

GWd/MT 

75.019 

GWd/MT 

Avg. power density 

(Active core region) 

211.503 

W/cm3 

50.537 W/cm3  

 

2.2 SALUS PDHRS 

The fluid system of SALUS Nuclear Steam Supply 

System (NSSS), as shown in Fig. 1, is consisted of 

Primary Heat Transfer System (PHTS), Intermediate 

Heat Transfer System (IHTS), Decay Heat Removal 

System (DHRS) and sodium-Water Reaction Pressure 

Relief System (SWRPRS). Among them the DHRS has 

two kinds of decay heat removal types. The one is 

passive type called a passive decay heat removal system 

(PDHRS) and the other is an active decay heat removal 

system (ADHRS). There are two loops of passive and 

active DHRSs, respectively. The PDHRS has two kinds 

of heat exchangers which are sodium-to-sodium decay 

heat exchanger (DHX) and helical-type sodium-to-air 

heat exchanger (AHX), respectively. The PDHRS 

performs decay heat removal of cold pool in reactor 

vessel after shutdown [6].  

 

 
Figure 1 Schematic diagram of NSSS Fluid System of 

SALUS. 
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3. GAMMA+ Modeling on SALUS PDHRS 

 

The GAMMA (Gas Multi-component Mixture 

Analysis) code has been developed to predict the 

physical phenomena expected following the anticipated 

as well as postulated accidents in a High Temperature 

Gas Cooled Reactor (HTGR). The GAMMA+ (General 

Analyzer for Multi-component and Multi-dimensional 

Transient Application) 1.0 version has been further 

updated from the original GAMMA code and the 

GAMMA+ 2.0 version is that extended to Micro Gas-

Cooled Reactor (MMR), Liquid-Metal Reactor (LMR), 

Moten-Salt Reactor (MSR) and Space Power Reactor 

(SPR) [4]. Using the GAMMA+ code, the preliminary 

analysis of heat exchangers in SALUS PDHRS is 

performed. In the first step the AHX is modeled and 

then the whole PDHRS is modeled together with DHX. 
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Figure 2 GAMMA+ nodalization scheme for the 

SLAUS AHX. 

 

3.1 Preliminary GAMMA+ Results on SALUS AHX 

SALUS AHX was modeled for the GAMMA+ code 

using the design information. Fig. 2 shows the 

GAMMA+ nodalization scheme for the SALUS AHX. 

 

Using the GAMMA+ code, the preliminary analysis 

on SALUS AHX is performed. The input and selected 

results from the GAMMA+ steady-state simulation for 

the SALUS AHX is listed in Table 2. The values are 

arbitrary and not design values. The present results are 

preliminary calculation results and further simulation 

will be done for the design of SALUS in the near future.  

 

Table 2 GAMMA+ Simulation for the SALUS AHX 
Parameters Tube side 

(Na) 

Shell side 

(air) 

Flowrate (kg/s) 18.16 6.96 

Pressure (MPa) 0.3 0.2 

Inlet temperature (℃) 314.7 40.0 

Outlet temperature (℃) 234.05 307.74 

 

The temporal and axial temperature profiles are 

shown in Fig. 3. The steady states were well achieved 

and the local temperature profiles show reasonable 

results.  
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(a) Temporal variation of fluid temperatures 
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(b) Variation of fluid temperatures along the AHX 

 

Figure 3 Steady-state calculation results on SALUS 

AHX. 

 

From the node sensitivity calculation on the 

STELLA-1 AHX test, it was shown that the fluid 

temperatures were converged when the node number is 

more than 30 [5]. It is necessary to increase the node 
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number from the present 10 to more than 30 during the 

detailed modeling of SALUS AHX. 
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Figure 4 GAMMA+ nodalization scheme for the 

SALUS PDHRS. 

 

3.2 Preliminary GAMMA+ Results on SALUS PDHRS 

Using the GAMMA+ code, preliminary analysis on 

heat exchanger in SALUS PDHRS is performed. The 

PDHRS was modeled for the GAMMA+ code using the 

design information. Fig. 4 shows the GAMMA+ 

nodalization scheme for the SALUS PDHRS, which 

includes the DHX, hot-leg pipe, cold-leg pipe, a sodium 

expansion tank, and AHX. 

The input and selected results from the GAMMA+ 

steady-state simulation for the SALUS PDHRS are 

listed in Table 3. The values are arbitrary and not design 

values. The present results are preliminary calculation 

results and further simulation will be done for the design 

of SALUS in the near future. 

 

Table 3 GAMMA+ Simulation for the SALUS PDHRS 
Parameters Shell side 

(Primary 

Na) 

Tube side 

(Secondary 

Na) 

Shell side 

(air) 

Flowrate (kg/s) 11.73 15.77 6.96 

Pressure (MPa) 0.1225 0.466 0.2 

Inlet temperature 

(℃) 

360.0 244.7 40.0 

Outlet 

temperature (℃) 

239.8 - 296.9 

 

The temporal and axial temperature profiles are shown 

in Fig. 5. The steady states were well achieved both in 

AHX and DHX, and the local temperature profiles show 

reasonable results. When the flowrates from both shells 

of the primary sodium and air are given as boundary 

conditions, the flowrate in the secondary sodium loop is 

well stabilized within 200 seconds.  
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(a) Temporal variation of AHX fluid temperatures 
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(b) Variation of fluid temperatures along the AHX 
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(c) Temporal variation of DHX fluid temperatures 
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(d) Variation of fluid temperatures along the DHX 
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(e) Variation of flow rates of primary/secondary sodium 

and air 

Figure 5 Steady-state calculation results on SALUS 

PDHRS. 

 

 

4. Conclusions 

 

Preliminary analyses of the performance of both the 

AHX only and the whole PDHRS loop including AHX 

and DHX were performed using the GAMMA+ code. 

The temporal and local heat transfer characteristics were 

investigated to analyze the design value of the AHX and 

DHX heat exchangers. The detailed analysis based on 

these results will be done for design confirmation of 

SALUS as a future work. 
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