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Research Background [1/4]

Coated cladding

Coated cladding is studied as a major ATF concept,
creating a need for an specialized analysis model.

The coated cladding is composed of multiple layers,
each made of a different material.

For coated cladding analysis, it is necessary to develop
a high-fidelity structural analysis model that can
simulate various physical phenomena occurring in
multi-layer structures.

- Elastic properties difference

- Creep deformation difference

- Axial irradiation growth difference
- Plastic behavior difference

- Thermal conductivity difference

- Thermal expansion difference
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Research Background [2/4]

Existing nuclear fuel analysis code: FRAPCON (Simplified point model)

= FRAPCON, developed by the US NRC, is a widely used nuclear fuel code.

=  FRACAS, a structural analysis model of FRAPCON, simplifies the analysis by neglecting
axial interactions and using the thick wall approximation.

=  While FRACAS is suitable for steady-state analysis of single-layer cladding, it is not
suitable for analyzing coated cladding due to its inability to simulate multi-layer

structures.
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Research Background [3/4]

Existing nuclear fuel analysis code: FEM

= As one of the attempts to analyze the multi-layer structure, nuclear fuel analysis codes
based on Finite Element Method (FEM) are being studied a lot.

= The FEM-based code has a high-fidelity model, it is possible to simulate the coated
cladding, and accurate analysis is possible even in cases where large deformation
occurs, such as ballooning.

= However, one disadvantage is that the computational cost increases when there are
numerous meshes or dealing with complex systems.
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Fig. Cladding analysis of BISON code
https://bison.inl.gov/SitePages/Applications.aspx



Research Background [4/4]

Characteristics of nuclear fuel cladding

1) High aspect ratio (thickness : height =1 : 6000)
2) Small deformation under normal operating condition

Nuclear fuel code development using Finite Difference Method

0.57 mm

A

3.66m

= FEM code shows excellent performance for local analysis, large deformation analysis,

and unstructured structure analysis.

= However, many axial meshes increase the computational cost of FEM codes, and since
cladding under normal operating condition do not deform much, using FEM codes for

this type of analysis is quite inefficient.

= FDM enables more fast and efficient analysis than FEM codes for long length

simulations under normal operating conditions.
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Schematic diagram of FEM & FDM




Research Objective and Scope

Research Objective

* Development of FDM model for steady-state structural analysis of coated
cladding

* Multi-layer analysis
* Plastic deformation
* Creep deformation
e Large deformation

e Comparative verification with commercial FEM code

Application

* Simulate coated cladding behavior in PWR environment




Model Development: Numerical scheme [1/3]

Governing equations

=  Force equilibrium equation in axisymmetric cylinder domain:

do ot Opr — O,
rr_l_ rz_l_ rr 66=O
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= The constitutive equation(Hooke’s law) represents the correlation between stress and
strain in a material, and it is mathematically expressed using the stiffness matrix:
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= Kinematic relations describe the strain and displacement of a material:
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= The equilibrium equation is initially formulated as a differential equation for stress, but
it can be transformed into a differential equation for displacement by incorporating
constitutive equations and kinematic relations.



Model Development: Numerical scheme [2/3]

Discretization
= Discretization process for use in FDM: “.2 T 2.
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= Displacement in all meshes can be calculated by solving the
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Model Development: Numerical scheme [3/3]

Numerical method for structural analysis

» Infinitesimal strain theory
: an approach used to analyze small deformations in materials.
. It assumes that the changes in shape and size of a material are small enough.
: not suitable for analyzing large deformations. u rdererm _ pinitial

deform __ 0

€ = — =
0,0 r rol‘rlltlal

= Incremental formulation
: Instead of solving the problem in a single step, it breaks it down into a series of
smaller incremental steps.

: The solution is updated incrementally until the final deformation is reached.

(l+1) (i)
O'n+1 =0, t+ A0 Ae (L+1)
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Model Development: Boundary conditions [1/2]

Open gap boundary conditions

Pressure boundary conditions at the inner

and outer surface:
{Urr(r = Ti) = _Pi
Grr(r = ro) = —F,

No shear stress due to hydrostatic pressure

on the surface in contact with fluid:
{Trz(r =1)=0
Tr(r=1,) =0

Bottom of the cladding is fixed axially:
u,(z=0)=0

The mean axial stress at top in a closed
pressurized cladding based on Saint-
Venant’s principle:

IR

O-ZZ
e — 1}

Open gap boundary conditions
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Model Development: Boundary conditions [2/2]

Closed gap boundary conditions (for PCMI)

Pressure boundary conditions at the

uncontacted inner surface:
Grr(r = ri) =—F

Displacement boundary conditions at the

contacted inner surface:
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Model Development: Modeling of material behaviors

s

Plasticity model

[ @ def, deg, def are assumed ]
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Model Verification: Multi-layer & creep & plastic deformation

= Purpose

: Comparative verification with commercial FEM codes in the case of multi-layer,
plastic deformation, and creep deformation

Simulation condition

Conditions

Internal
pressure (MPa)

Outer
pressure (MPa)

15.5

Simulation
time (days)

Temperature
(°C)

22.5

Substrate

Coating

Elastic
modulus (GPa)

80 270

Poisson’s ratio

0.3 0.21

Creep
deformation

0] X

600

400

Stress (MPa)

200

0

Z 16 um
e
A A
Creep correlation (Norton) < >
ecreer = 2.0 x 107 (g,,,,)>° 475mm 1| 3.66m
7 15.5
MPa MPa
Substrate 4.18 mm
Coating
0.000 : 0.(;01 ’0.(;02 ' 0.(;03 ' O.OIO4 ‘ O.OIOS ’ 0.(;06 ' 0.(;07 l 0.0|08 ‘ O.OIOQ ' 0.010
Strain
Stress strain curve of substrate and coating layer
\ 4 2

Cladding geometry used for verification
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Model Verification: Multi-layer & creep & plastic deformation

Radial displacement (z = 1.83 m)
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The radial displacement, axial displacement, strain, and stress all show excellent
agreement with the results obtained from FEM analysis.




Model Verification: Large deformation

= Purpose

: To compare the difference between the calculated results of the infinitesimal strain
theory and incremental formulation with commercial FEM calculations.

Simulation condition

deformation

Conditions
Internal v
pressure (MPa)
Outer
pressure (MPa) 15.5
Simulation v
time (days)
Temperature
22.5
(°C)
Substrate
Elastic
modulus (GPa) 80
Poisson’s ratio 0.3
Cree
P 0

600

400

Stress (MPa)

200

0

Z
A A
Creep correlation (Norton) < >
ecreer = 2.0 x 107 (g,,,,)>° 475mm || 3.66m
7 15.5
MPa MPa
Substrate 4.18 mm
Coating
0.000 : 0.(;01 ’0.(;02 ' 0.(;03 ' O.OIO4 ‘ O.OIOS ’ 0.(;06 ' 0.(;07 l 0.0|08 ‘ O.OIOQ ' 0.010
Strain
Stress strain curve of substrate and coating layer
A 4 2

Cladding geometry used for verification
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Model Verification: Large deformation

Hoop strain

Hoop strain (z=1.83 m)

Hoop stress (t = 168 h)

At the beginning of the simulation, the hoop strain calculated by the two

methodologies and the hoop strain calculated by Abaqus are in good agreement.

As time goes on, there are differences between the results from the infinitesimal

strain theory and Abaqus, as well as small differences in stress.
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Model Verification: Large deformation

= Purpose

: Comparative verification with commercial FEM codes in the case of hoop strain is

larger than 1%

Simulation condition

deformation

Conditions
Internal
pressure (MPa) 125
Outer pressure
(MPa) 0.1
Simulati
|_mu ation 360
time (sec)
Temperature
22.5
(°C)
Elastic
modulus (GPa) 200
Poisson’s ratio 0.3
Cree
P 0

Stress (MPa)

Creep correlation (Norton)
cereer — 2 () x 10—17(0.vm)5.0

400

200

Substrate|

0.000

T
0.001
Strain

0.002

Stress strain curve of substrate layer

A 4

100 mm

0.1
MPa

v
-

Cladding geometry used for verification
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Model Verification: Large deformation

Radial displacement (z = 1.83 m) Axial displacement (z=1.83 m)
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High agreement with FEM calculation results in displacement or stress even in
cases where the hoop strain exceeds 1%
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Model Application: Case study

= Purpose

: To verify the reduction of stress in the substrate and the decrease in creep

deformation when introducing a coating layer

Simulation condition

Conditions

Internal
pressure (MPa)

Outer
pressure (MPa)

15.5

Simulation
time (days)

Temperature

©0) 22.5

Substrate | Coating

Elastic
modulus (GPa)

80 2

70

Poisson’s ratio 0.3 0.

21

Creep
deformation

o)

X
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. 52-€5-&
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600

400
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200
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0 Tl e et e b e ol o
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
Strain

Stress strain curve of substrate and coating layer

Z 16 um
-]
A A
4.75 mm 3.66m
7 15.5
MPa MPa
4.18 mm
\ 4 > [

Cladding geometry used for verification

20



Model Application: Case study

Displacement decreased

Pressure Radial displacement (z = 1.83 m)
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-1000 Zr (BOL) -1000 Zr (EOL) odulus x
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-1300 - = - . . . -1300 - - ; . ; .
42 44 46 4.8 42 44 4.6 48
Radial position (mm) Radial position (mm)

The coating layer has a diminishing effect on creep deformation, which is
enhanced with higher modulus or greater thickness of the layer.
The coating layer helps alleviate substrate stress.
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Model Application: GIFT

GIFT

= LWR Nuclear Fuel Performance Analysis Code
: simulates normal operation and the entire spent fuel period in the reactor

Data Input Module
. . =TT
: Rod Information
: Gas Property
1 - Power Plant Design Parameter
: Thermal Power History
L

|

1 Wadding Material
Pellet and Gap Module ladding Mechani ior Module Woperty Module Coolant Module

Iallad 1°ond

Data Output Module

1
1 - Operation Output Data

: Pellet/Gap/Cladding Output Data :
[
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Model Application: GIFT

Comparison between PWR standard fuel and ATF

Change of Stress/Strain Distribution

: due to coating layer, less stress and less creep on Zr body, and late gap closure in ATF

Cladding Hoop Stress[MPa]

Mechanical Gap[microns]
w 5 & 5 8 8

]

Cladding Hoop Stress

| == PWR Standard
| === Cr Coated ATF
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8
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n
S

Gap Interface Pressure|
5 o
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Conclusion

Nuclear fuel cladding structure analysis code using 2D FDM has been
developed.

1) The developed code is a versatile tool capable of simulating multi-layer, plastic
deformation, creep deformation, and PCMI.

2) It is fast and accurate high fidelity model that can analyze complex phenomena
that can occur in the coated cladding in normal operation condition

3) Verification completed with commercial FEM code with various test cases
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