Fuel Performance Code for Light Water Reactor, GIFT: Current development status and path-forward

Kyuseok Sim^a, Youho Lee^{a*}

^a Department of Nuclear Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea

*Corresponding author: leeyouho@snu.ac.kr

1. Introduction

While designing a nuclear reactor, fuel performance modeling is crucial because it shows changes in the overall state of the nuclear fuel rod during the operation of the nuclear power plant and determines whether the rod will remain stable throughout operation without failure. In addition, the code simulation results should confirm that the number of regulatory restrictions on the rod is satisfied.

For this purpose, Korea has generally used the FRAPCON code, a computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup, so far. FRAPCON was created for the United States Nuclear Regulatory Commission (US NRC) by the Pacific Northwest National Laboratory (PNNL) [1]. Korea's nuclear regulatory agencies have utilized this nuclear fuel code by using the executable file as it is, or with adding a new model to the source code.

However, more extended simulation capabilities have begun to be required for nuclear fuel codes recently. There have been various changes in the nuclear power academia, such as introduction of several new fuel concepts like accident tolerant fuel (ATF), a movement to use fuel until it reaches a higher burnup level over 60MWd/kgU, and interest in spent nuclear fuel, etc.

Amid this trend, the development of the GIFT code, Generalizable Integral Fuel-Life Tracker, has been carried out from 2021 to the present. By mounting a newly made high-performance model based on previously developed physical and mathematical models, GIFT-1.0 enhances the accuracy and fidelity of the light water reactor simulation. Also, it is designed to facilitate the establishment of regulatory standards for new types of nuclear fuel by developing and adding independent models suitable for ATF simulation.

In this paper, in addition to an overview of GIFT code, how to use GIFT code and some test results will be discussed.

2. Overview of GIFT

GIFT can recognize fuel rods by dividing them into pellets, gaps, and cladding, and can also briefly simulate reactor environments such as coolants. The overall module structure of the GIFT is shown in Fig. 1.

Fig. 2 shows the calculation flow chart of GIFT. After initializing the code with received user input, the code is executed around the convergence loop for pressure and the other loop for temperature difference in the gap. In this process, the power and burnup, the temperature and deformation at each point of the fuel, the amount of fission gas produced and released, and the volume and internal pressure in the fuel rod are calculated.

Fig. 1. Overview of GIFT code structure

As a nuclear fuel performance code for LWR, GIFT adopts the following basic configurations:

- *Geometry.* In the code, a fuel rod consists of several axial segments, which are divided into radial ring segments while assuming azimuthal symmetry. Pellet and cladding have different numbers of ring segments.
- Thermal Analysis. Dittus-Boelter equation was used for heat transfer from cooling water to cladding and Ross-Stoute gap conductance model was used for cladding to pellet heat transfer. Inside the cladding, heat conduction equation with one-dimensional approximation is used, and inside the pellet, the temperature is calculated through a two-dimensional FDM assuming azimuthal symmetry.
- Stress and Strain Analysis. Thermal expansion, swelling, densification, and relocation causing deformation of a pellet are calculated by the empirical model. An isotropic assumption applies to other components except relocation. In the case of cladding, the 2D axisymmetric structural

analysis function is used to calculate the stress and strain at each mesh. This function receives pressure, temperature, creep, and plastic strain as its input.

 Fission Gas Release. Forsberg-Massih model is used for the fission gas release. This model performs the calculation considering the diffusion of fission gases produced by irradiation and their release from the fuel surface.

Fig. 2. Flowchart of GIFT code

In addition to the basic light-water reactor simulation capabilities of existing nuclear fuel performance codes, this GIFT code contains several notable functions and specialized models. Table 1 summarizes those features; cladding structural analysis function, chromium-coated cladding model, SiC cladding model, spent fuel model, and hydrogen diffusion model. The presence of these distinct features demonstrates that GIFT code is capable of performing equivalent tasks to other existing codes, as well as achieving better performance and responding to the development of new nuclear fuel concepts.

These characteristics differentiate GIFT code from other traditional nuclear fuel codes. For example, the FRAPCON code uses a 1D model for individual axial meshes when calculating the cladding deformation. In the case of chromium-coated ATF or SiC duplex cladding, however, it is difficult to calculate using this model, and the effect of the new cladding concepts on nuclear fuel performance cannot be properly evaluated. Table 1. Description of major features of GIFT code

Features	Description
Cladding Structural	Perform calculations for
Analysis Function	multiple layers of cladding
	using a two-dimensional
	axisymmetric model
Chromium-Coated	Simulate the individual
Cladding Model	behavior and interaction of
	two layers, each with the
	properties of chromium and
	zircaloy
SiC Cladding	Simulate two types of SiC
Model	cladding, monolith and
	composite, up to three layers,
	including pseudo ductility of
	composite
Spent Fuel Model	Based on experimental data,
	creep deformation and
	swelling of spent nuclear fuel
	are simulated
Hydrogen Diffusion	Simulates hydrogen diffusion
Model	in vertical direction within
	cladding, considering
	precipitation and hydrides

3. Input and Output Interfaces of GIFT

GIFT operates through text-based input and output interfaces. The input file consists of individual block units that contain information about fuel rod and reactor separately. An example of an input file is shown in Fig. 3. The brief descriptions of the basic information to be included in individual blocks is shown in Table 2.

CLeCThickness(m) 570e-6 CLeRRouphers(m) 520e-7 CLeRCollengration 520e-7 CLeCCollengration 20 CLeCToper(-): Zr4
CapWidth(m): 825+6 CapWidth(m): 825+6 CapWidth(m): 825+6 CapWidth(m): 825+6 CapWidth(m): 825+6 CapWidth(m): 825+6 CapWidth(m): 825+6 CapWidth(m): 825+6
PierumLen(m): 0.525 5pringTum/m(k): 60 5pringTum/m(k): 8-3 5pringTwien(bi: 1.2e-3
Codam/Pressure[Pa]; 1551e=6 Codam/MarSovare[Pa]; 1551e=6 Codam/MarSovare[Pa]; 1551e=6
RedDarright 56-1 RedDarright 56-1 RedRethening 10025 ActiveFuellen(m) 3.66

Fig. 3. Input example of GIFT code

In addition to the basic information given above, GIFT code has an additional list of information that can be entered according to the user's purpose. These optional inputs are required for MOX, ATF, spent fuel functions, etc. A description of the blocks used to enter the optional information is as follows:

- MOX: an additional block used when fuel type is set to MOX. Contains information on plutonium concentration in fuel.
- SPENT_FUEL: a block added when you want to use spent fuel simulation. Instructs the time step when wet storage and dry storage periods begin.

- CR_COATING: a block added when you want to use the Chromium-coated ATF option. You can enter the thickness of the coating and the material properties of the chromium used in the coating.
- SIC: a block required when using the SiC cladding option, which can be used to specify the structure and material type of the SiC cladding.

Table 2.	The	default	input	list	of	GIFT	code	categorized	by
blocks.									

the number of time stepsNUMBERSthe number of axial meshesthe number of fuel radial meshesTIMEcalendar daysInear heat generation ratepositions for the shape functionvalues of the shape functionindex space of the shape functionthe number of time steps for each shapefunction indexpellet dish depthpellet dish shoulder widthpellet chamfer widthpellet oright adjustpellet oright adjustpellet lengthfuel theoretical densityenrichmentinitial gap widthinternal pressuregas typeinitial cladding thicknesscladding material typePLENUMPLENUMRODRODRODthe number of ture stepspitchactive fuel lengthactive fuel length	Block Name	Components			
NUMBERSthe number of axial meshesthe number of fuel radial meshesTIMEcalendar dayslinear heat generation ratepositions for the shape functionvalues of the shape functionindex space of the shape functionthe number of time steps for each shapefunction indexpellet dish depthpellet dish shoulder widthpellet chamfer widthpellet originalpellet originalpellet let hearter widthpellet noghnesspellet let hearter heightpellet let hearter heightpellet let dish shoulder widthpellet let dish depthpellet originalpellet chamfer heightpellet originalpellet lengthfuel theoretical densityenrichmentinitial gap widthinternal pressuregas typeinitial cladding thicknesscladding material typeplenum lengthspring number of turnsspring diameterspring wire diametercoolant pressurecoolant intert temperaturecoolant mass flow ratereactor typereactor typerod diameterpitchactive fuel length		the number of time steps			
NOMBERS the number of fuel radial meshes TIME calendar days Incar heat generation rate positions for the shape function values of the shape function values of the shape function index space of the shape function index space of the shape function index space of the shape function index space of the shape function power pellet dish depth pellet dish shoulder width pellet chamfer width pellet chamfer height pellet class pellet void radius pellet length fuel theoretical density enrichment initial gap width initial cladding thickness cladding roughness cold work cladding material type plenum length spring number of turns spring diameter spring diameter spring diameter spring wire diameter coolant mess flow rate coolant inlet temperature coolant mass flow rate	NUMBERS	the number of axial meshes			
TIMEthe number of cladding radial meshesTIMEcalendar dayslinear heat generation ratepositions for the shape functionvalues of the shape functionindex space of the shape functionthe number of time steps for each shapefunction indexpellet dish depthpellet dish shoulder widthpellet chamfer widthpellet chamfer heightpellet lengthfuel theoretical densityenrichmentinitial gap widthinitial cladding thicknesscladding roughnesspellet statistical densitycold workcladding material typePLENUMPLENUMRODRODRODthe number of turnsspring diameterpitchactive fuel lengthactive fuel length		the number of fuel radial meshes			
TIMEcalendar daysInear heat generation ratepowersInear heat generation ratepowersPOWERIndex space of the shape functionthe number of time steps for each shapefunction indexpellet dish depthpellet dish shoulder widthpellet dish shoulder widthpellet chamfer heightpellet roughnesspellet void radiuspellet lengthfuel theoretical densityenrichmentinitial gap widthinternal pressuregas typegas typeinitial cladding thicknesscold workcladding material typeplenum lengthspring number of turnsspring diameterspring diametercoolant pressurecoolant pressurecoolant inlet temperaturecoolant mass flow ratereactor typerod diameterpitchactive fuel length		the number of cladding radial meshes			
linear heat generation ratepositions for the shape functionvalues of the shape functionindex space of the shape functionindex space of the shape functionthe number of time steps for each shapefunction indexpellet dish depthpellet dish shoulder widthpellet orighnesspellet orighnesspellet orighnesspellet roughnesspellet orighnesspellet void radiuspellet lengthfuel theoretical densityenrichmentinitial gap widthfuel theoretical densityenrichmentinitial cladding thicknesscladding roughnesscold workcladding material typeplenum lengthspring number of turnsspring diametercoolant pressurecoolant pressurecoolant pressurecoolant pressurecoolant mass flow ratereactor type <td colspa<="" td=""><td>TIME</td><td>calendar days</td></td>	<td>TIME</td> <td>calendar days</td>	TIME	calendar days		
POWERpositions for the shape functionvalues of the shape functionindex space of the shape functionthe number of time steps for each shapefunction indexpellet dish depthpellet dish shoulder widthpellet chamfer heightpellet chamfer heightpellet orighnesspellet lengthfuelt lengthfuelt lengthfuelt lengthfuelt lengthfuelt dish grouphnesspellet lengthfuelt lengthfuelt lengthfuelt dish grouphnesscladding roughnesscladding material typeplenum lengthspring number of turnsspring diameterspring diameterspring diametercoolant mess flow ratereactor typerod diameterpitchactive fuel length		linear heat generation rate			
POWERvalues of the shape function index space of the shape function the number of time steps for each shape function indexpellet dish depth pellet dish shoulder width pellet chamfer heightpellet dish shoulder width pellet chamfer heightPELLETpellet chamfer height pellet void radius pellet length fuel theoretical density enrichment initial gap width internal pressure gas typeCLADDINGcladding roughness cold work cladding material type plenum length spring number of turns spring diameter spring diameterPLENUMspring number of turns spring diameter coolant inlet temperature coolant mass flow rateRODreactor type rod diameter pitch active fuel length		positions for the shape function			
FOWER index space of the shape function index space of the shape function the number of time steps for each shape function index pellet dish depth pellet dish shoulder width pellet dish shoulder width pellet chamfer height pellet chamfer height pellet roughness pellet roughness pellet length fuel theoretical density enrichment initial gap width internal pressure gas type initial cladding thickness cladding roughness cold work cladding material type plenum length PLENUM spring number of turns spring diameter spring diameter coolant pressure coolant pressure coolant inlet temperature coolant mass flow rate ROD reactor type rod diameter pitch active fuel length active fuel length	DOWED	values of the shape function			
the number of time steps for each shape function indexpellet dish depth pellet dish shoulder width pellet chamfer width pellet chamfer heightPELLETpellet chamfer height pellet roughness pellet length fuel theoretical density enrichmentGAPinitial gap width internal pressure gas typeCLADDINGcladding roughness cold work cladding material type plenum length spring number of turns spring diameter coolant pressure coolant intersal flow rate reactor typeRODreactor type rod diameter pitch active fuel length	FOWER	index space of the shape function			
function indexpellet dish depthpellet dish shoulder widthpellet dish shoulder widthpellet dish shoulder widthpellet dish shoulder widthpellet chamfer widthpellet roughnesspellet roughnesspellet roughnesspellet void radiuspellet lengthfuel theoretical densityenrichmentinitial gap widthinitial cladding thicknesscladding roughnesscold workcladding material typeplenum lengthspring number of turnsspring diametercoolant mess flow ratecoolant inlet temperaturecoolant inlet temperaturecoolant mass flow ratereactor typerod diameterpitchactive fuel length		the number of time steps for each shape			
PELLETpellet dish depthPELLETpellet chamfer widthpellet chamfer heightpellet chamfer heightpellet roughnesspellet roughnesspellet void radiuspellet lengthfuel theoretical densityenrichmentinitial gap widthinitial gap widthGAPinitial cladding thicknesscladding roughnesscold workcladding material typeplenum lengthPLENUMspring number of turnsSpring diameterspring diametercoolant pressurecoolant inlet temperatureCOOLANTcoolant mass flow rateRODreactor typeRODinternal presure		function index			
pellet dish shoulder widthpellet chamfer widthpellet chamfer heightpellet roughnesspellet void radiuspellet lengthfuel theoretical densityenrichmentinitial gap widthinternal pressuregas typeinitial cladding thicknesscold workcladding material typeplenum lengthspring number of turnsspring diameterspring diameterspring wire diametercoolant pressurecoolant pressurecoolant mass flow ratereactor typerod diameterpitchactive fuel length		pellet dish depth			
PELLETpellet chamfer width pellet chamfer heightPELLETpellet roughness pellet void radius pellet length fuel theoretical density enrichment initial gap width internal pressure gas type cladding thickness cladding roughness cold work cladding material type plenum length spring number of turns spring diameter spring diameterPLENUMcoolant pressure spring wire diameter coolant nest flow rate reactor type rod diameterRODreactor type rod diameter pitch active fuel length		pellet dish shoulder width			
PELLETpellet chamfer heightPELLETpellet roughnesspellet void radiuspellet lengthfuel theoretical densityenrichmentinitial gap widthGAPinternal pressuregas typecladding thicknesscladding roughnesscold workcladding material typeplenum lengthspring number of turnsspring diameterspring diametercoolant pressurecoolant pressurecoolant inlet temperaturecoolant mass flow ratereactor typerod diameterpitchactive fuel length		pellet chamfer width			
PELLET pellet roughness pellet void radius pellet length fuel theoretical density enrichment initial gap width initial gap width GAP internal pressure gas type initial cladding thickness cladding roughness cold work cladding material type plenum length spring number of turns spring diameter spring diameter spring wire diameter coolant pressure coolant mass flow rate ROD reactor type ROD reactor type		pellet chamfer height			
pellet void radiuspellet lengthfuel theoretical densityenrichmentinitial gap widthinternal pressuregas typegas typecladding thicknesscladding roughnesscold workcladding material typeplenum lengthspring number of turnsspring diameterspring diametercoolant pressurecoolant inlet temperaturecoolant mass flow ratereactor typerod diameterpitchactive fuel length	PELLET	pellet roughness			
pellet lengthfuel theoretical densityenrichmentinitial gap widthinternal pressuregas typegas typeinitial cladding thicknesscladding roughnesscold workcladding material typeplenum lengthspring number of turnsspring diameterspring diametercoolant pressurecoolant inlet temperaturecoolant mass flow ratereactor typerod diameterpitchactive fuel length		pellet void radius			
fuel theoretical density enrichment initial gap width internal pressure gas type initial cladding thickness cladding roughness cold work cladding material type plenum length spring number of turns spring diameter spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length		pellet length			
enrichment GAP initial gap width gas type gas type initial cladding thickness cladding roughness cold work cladding material type plenum length spring number of turns spring diameter spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length		fuel theoretical density			
GAP initial gap width gas type gas type initial cladding thickness cladding roughness cold work cladding material type cladding material type plenum length PLENUM spring number of turns spring diameter spring diameter coolant pressure coolant pressure COOLANT coolant mass flow rate reactor type rod diameter pitch active fuel length		enrichment			
GAP internal pressure gas type gas type initial cladding thickness cladding roughness cold work cladding material type cladding material type plenum length PLENUM spring number of turns spring diameter spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length active fuel length		initial gap width			
gas type initial cladding thickness cladding roughness cold work cladding material type plenum length spring number of turns spring diameter spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length	GAP	internal pressure			
initial cladding thickness cladding roughness cold work cold work cladding material type plenum length spring number of turns spring diameter spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length		gas type			
CLADDING cladding roughness cold work cladding material type cladding material type plenum length spring number of turns spring diameter spring wire diameter spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length active fuel length		initial cladding thickness			
CDA DDING cold work cladding material type plenum length plenum length spring number of turns spring diameter spring diameter spring wire diameter coolant pressure COOLANT coolant inlet temperature COOLANT coolant mass flow rate reactor type rod diameter pitch active fuel length	CLADDING	cladding roughness			
cladding material type plenum length spring number of turns spring diameter spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length	CLIDDING	cold work			
PLENUM plenum length spring number of turns spring diameter spring wire diameter coolant pressure COOLANT coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length active fuel length		cladding material type			
PLENUM spring number of turns spring diameter spring wire diameter coolant pressure coolant pressure COOLANT coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length active fuel length		plenum length			
spring diameter spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length	PI ENILIM	spring number of turns			
spring wire diameter coolant pressure coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length	I ELIVOWI	spring diameter			
COOLANT coolant pressure coolant inlet temperature coolant mass flow rate coolant mass flow rate reactor type rod diameter pitch active fuel length cotive fuel length		spring wire diameter			
COOLANT coolant inlet temperature coolant mass flow rate reactor type rod diameter pitch active fuel length	COOLANT	coolant pressure			
coolant mass flow rate reactor type rod diameter pitch active fuel length		coolant inlet temperature			
reactor type rod diameter pitch active fuel length		coolant mass flow rate			
ROD rod diameter pitch active fuel length		reactor type			
pitch active fuel length	ROD	rod diameter			
active fuel length	KOD	pitch			
		active fuel length			

GIFT's text output has its own format, but it is not suitable for users to read immediately. For this reason, the GIFT code package contains a script that converts the output file into graphs for individual physical quantities. Fig. 4 is an example of graphs made by the script, using GNUplot software.

Fig. 4. Graphs post-processed by the script of GIFT code package, (A) fuel centerline temperature, (B) cladding axial stress, (C) mechanical gap width

4. Validation with OECD/NEA fuel experiment data bank

GIFT code was verified by comparing the experimental results of the OECD/NEA IFPE database with the code execution results. Table 3 lists the six cases used to verify GIFT code to date, and Fig. 5 shows all the calculated burnup results of the entire case, where the calculated value and experimental data closely match. Some cases containing additional information have individually described with extra paragraphs following.

Table 3. List of the cases used for the verification of GIFT code

	Case Name	Number of Rods
1	CONTACT [2]	3
2	Br-3 [3]	4
3	HBEP [4]	63
4	USPWR 16x16 [5]	4
5	Regate [6]	1
6	IFA-534 [7]	2

Fig. 5. Comparison between calculated and measured burnup of all cases

4.1. case 'CONTACT'

The data for the case 'CONTACT' comes from an inpile test program carried out in the Siloe reactor. Rods of Zr-4 clad UO2 pellets of standard PWR 17x17 assembly were used [2]. A comparison between calculated and measured fuel centerline temperature of rods of 'CONTACT' case are presented in Fig. 6. It can be seen that the two values match well, over the entire period. 4.2, case 'Br-3'

The 'Br-3' case is a program about exposing 5 PWRtype test rods to high burn-up in the Br-3 reactor in Mol [3]. Table 4 shows the results of comparative verification for the four rods from the case 'Br-3'. In the results of the fission gas release, except for an error of about 20% in the rod '36-I-8', it can be seen that only a small error of less than 10% was observed overall.

Fig. 6. Comparison between calculated and measured fuel centerline temperature of the case 'CONTACT' (A) rod 1 and (B) rod 2

Table 4. Comparison of burnup and fission gas release between GIFT execution results and BR-3 experiment results

		FGR[%]]
CASE	EXPERIMENT	GIFT	error rate[%]
24-I-6	21.8	23.6	7.69
28-I-6	13.2	13.3	0.70
36-I-8	33.8	42.6	20.6
111-I-5	14.4	13.8	3.98

4.3. case 'HBEP'

From the case 'HBEP,' high burnup effects program carried out at the Battelle North-west Laboratories, data of 63 rods are used for verification [4]. Fig. 7 shows the comparison of the internal pressure at the end of operation among the experimental data of the case 'HBEP' and the calculation result of the GIFT code. Most of the code execution results showed a difference of less than 1 MPa from the experimental data.

Fig. 7. Comparison between calculated and measured rod internal pressure of the case 'HBEP'

4.4. case 'USPWR 16x16'

The data in the case 'USPWR 16x16' is from the 1980s US-PWR 16x16 lead test assembly extended burnup demonstration program [5]. In a commercial PWR in the United States, two 16x16 assemblies were irradiated and their data is included in this case.

Table 5 includes comparison results between 'USPWR 16x16' experimental data and GIFT results for the void volume inside the rod and the total amount of collected gas. An error of no more than 2mL was shown in both rod data, demonstrating that the experimental data and GIFT's calculations were consistent with high accuracy.

Table 5. Comparison of void volume at end of life and total collected gas volume in STP between GIFT execution results and USPWR 16x16 experiment results

CASE	Void Volume [mL]			Collected Gas Volume in STP [mL]		
	EXPERI -MENT	GIFT	error [mL]	EXPERI- MENT	GIFT	error [mL]
TSQ 002	17.8	16.0	1.8	21.8	23.6	1.8
TSQ 022	31.0	32.2	1.2	13.2	13.3	0.1

5. Conclusion

The domestic nuclear fuel performance code GIFT has been developed to respond to the emergence of new nuclear fuel concepts. GIFT achieved high accuracy and fidelity by embedding both existing developed models and new models with higher performance, which were then verified by comparing them to actual experimental data. In the future, the code and its individual model will be updated as verification with more data proceed.

ACKNOWLEDGEMENT

This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea [2101051].

REFERENCES

- K. Geelhood, W. Luscher, and P. Raynaud, "FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup. Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology," *Pacific Northwest Lab., Richland, WA (United States)*, 2015.
- [2] M. Charles, P. Chenebault, and P. Melin, "Mechanisms of Fission Gas Release from Different Types of Fuel Rods During Normal Operation: Results and Analysis of "CONTACT" Experiments," *Light Water Reactor Fuel Performance, Orlando, Florida,* pp. 21-24, 1985.
- [3] R. J. White, "IFPE/BR3-HBFRHCP, BR-3 High Burnup Fuel Rod Hot Cell Program," 2003.
- [4] J. Barner, M. Cunningham, M. Freshley, and D. Lanning, "High Burnup Effects Program," Battelle Pacific Northwest Lab., Richland, WA (USA), 1990.
- W. Lyon, "US-PWR 16x16 LTA Extended Burnup Demonstration Program Summary File," ed: Revision, 2005.
- [6] C. STRUZIK and J. Turnbull, "IFPE/REGATE L10.
 3, FGR and Fuel Swelling during power transient at medium burn-up (Siloe reactor)," 2004.
- [7] I. Matsson, "The Effect of Grain Size on FGR and PCMI in High Burnup Fuel (IFA-534.14)," Institutt for energiteknikk, 1999.