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1. Introduction

The Core Operating Limits Supervisory System
(COLSS) is an important component of commercial
reactor core monitoring systems (CMS), developed by
Combustion Engineering, Inc. [1]. It collects reactor
coolant measurements and in-core neutron detector
signals and calculates multiple core safety parameters in
real-time. The COLSS conservatively calculates lumped
one-dimensional axial power distribution and multiplies
penalties to estimate safety parameter.

This study aims to model the machine learning
algorithm that synthesize the 3-D Assembly Power
Distribution (APD) from in-core detector data, then
increase the margin of the most critical safety parameter
of the CMS, the minimum Departure from Nucleate
Boiling Ratio (MDNBR), by replacing the conservative
penalty with model uncertainty. The General Method of
Data Handling (GMDH), which was developed by
Ivakhnenko [2], is used for the regression model. GMDH
has the merits of model-transparency, low memory usage,
and high accuracy to perform on the on-line COLSS
environment. The training data for GMDH are produced
using 3-D whole-core two step code STREAM/RAST-K,
which has been developed in UNIST [3].

The methods and results of each procedure, including
input data acquisition, GMDH training, and uncertainty
evaluation, have been explained. Two GMDH models
have been developed: one for the 3-D assembly power
distribution and the other for the hot-pin's power
distribution (HPD). This paper also explains various
ways to apply these regression models on the COLSS to
increase the operational margin of MDNBR.

2. Methods and Results

This section explained that the procedure of 1-D APD
model of original COLSS and 3-D APD reconstruction
using GMDH model pre-trained with data from
STREAM/RAST-K, which are applied to MDNBR
calculation in COLSS monitoring. By replacing the 1-D
APD in original COLSS as the 3-D APD reconstruction
model GMDH, the conservative penalties from 1-D
model can be also replaced as the uncertainty of GMDH
model.

2.1 APD and DNBR in COLSS
The model of 1-D axial power distribution consists of

the Fourier spline fitting with radially averaged 5-level
detector power and two boundary conditions [4]. This

model utilizes only the averaged information of detector
power and loses the other radially distributed
information. COLSS multiplies the highly conservative
penalty factors on the fitted distribution to calculate the
maximum APD for the next step of DNBR algorithm.
The MDNBR is defined as the ratio of the critical heat
flux to the local heat flux, which is regarded as the hot-
pin heat flux (HHF) for the MDNBR value. The critical
heat flux (CHF, q¢j,¢) and MDNBR can be expressed as:

q(,:’hf = mhfg (Tsat - Tsub) (1)
qé,hf
MDNBR = —
qhot—pin X FV (2)
— Qactual
v q1,1.,niform X area (3)

, where i is the mass flow rate, hg4 is the enthalpy of
evaporation, Ty, is saturation temperature and Ty, is
subcooled temperature. The non-uniform flux correction
factor (F,) is defined as the ratio of the actual heat
transfer rate to the heat transfer rate that would occur if
the heat flux were uniform.

2.2 GMDH 3-D Power Reconstruction

The input data of the 3-D model are the 5 detector
powers from 45 In-core instrumentation assemblies (ICI).
To optimize data utilization for training GMDH, the
input batch consists of the power readings from 20
detectors located in four ICIs adjacent to each target
assembly. The target data consists of 3-D APD shapes
for 177 assemblies and 40 axial nodes, and 1-D hot-pin
power distribution.

The data are acquired by the whole-core calculation of
STREAM/RAST-K, at the 60% ~ 100% core power, and
randomly inserted control rod following power
dependent insertion limit (PDIL) from the selected core
power. In a dataset, 40,000 data are split by 32,000 (80%)
of training, 4,000 (10%) of validation, and 4,000 (10%).

The models are trained with the self-organizing multi-
layered iterative algorithm (MIA) that provides linear
polynomial regression [5]. The Ivakhnenko polynomial
which is the basis function of GMDH model is [2]:

— 2
Dij = Qo + a1; + apX; + azx? + ayx;x; @
+ asxf

, where i and j are the data selection index from the input
batch. At the first layer of MIA, 20Cz (= 190) polynomials
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and those coefficients are computed with least square.
The set of 50 polynomials, ranked by their smallest loss
value using the L1 Loss function, is forwarded to the next
layer. The maximum number of layers is 20, but the layer
forward is stopped when model is overfitted.

The evaluation metric of GMDH model accuracy is
relative difference (RD, %) between the value from
GMDH and RAST-K:

_ PGMDH,xy,z - PRAST—K,xy,z

RD, x 100%

©)

Y.z
P, RAST—-K,xy,z

The following Fig. 1. ~ Fig. 4. show the results of 3-D
APD reconstruction and 1-D HPD reconstruction,
comparing them to those of RAST-K.
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Fig. 1. The radial assembly power distribution of GMDH and
RAST-K, top node of the OPR-1000 BOC core (unit: W/cm?).
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Fig. 2. The radial assembly power distribution of GMDH and
RAST-K, top node of the OPR-1000 MOC core (unit:
W/em?).
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Fig. 3. The radial assembly power distribution of GMDH and
RAST-K, top node of the OPR-1000 EOC core (unit: W/cm?).
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Fig. 4. The axial hot-pin power distribution of GMDH and
RAST-K, OPR-1000 MOC core.

It is shown that the RD of RS control rod installed
positions are up to around 3%, and the other APD are
accurately fit. The root mean squared (RMS) of RD are
0.218%, 0.182%, and 0.348% for BOC, MOC, and EOC
top node of core.

2.3 Uncertainty Evaluation of GMDH Model

To apply the GMDH model on the COLSS, the model
uncertainty should be evaluated and applied for final
results. Fig. 5. Shows the 3-D RD histogram of (4,000
test data X 177 assemblies X 40 axial nodes) test dataset
of RAST-K and predicted values of GMDH model. The
normality test of the trained model by the histogram
shape and the Shapiro-Wilk normality test failed then the
uncertainty evaluation can be implemented by non-
parametric uncertainty analysis methods.

The X% of confidence limit (CL) « and f are obtained
from the numerical of probability density function p(x):
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Fig. 5. The probability density function of RD for GMDH
trained model (p-value of Shapiro-Wilk test = 0.001)

Table I. shows the 99% confidence limit obtained
from the one of available non-parametric uncertainty
analysis methods, bootstrapping [6]. GMDH. refers to
the model trained for the 3-D APD, while GMDHs refers
to the model trained for the 1-D HPD.

Table I: 99% confidence limits for GMDH model RD (%).

Synthesis . .
Model Lower limit («) Upper Limit (8)

3-D APD -0.3889 0.3505

1-D HPD -0.6593 0.7438

Through this process, the propagation of uncertainty
in the calculation of DNBR using COLSS can be
evaluated. When applying GMDH models to COLSS,
the uncertainties of the models propagate through several
modules in COLSS. We have conducted an uncertainty
analysis using a sampled test dataset and the uncertainty
of the predicted values from GMDH can propagate to
those of the MDNBR results.

2.4 COLSS Application for DNBR safety margin

Recalling Eq. (1), the critical heat flux (g, ) is derived
from temperature and enthalpy changes with respect to
the 1-D axial power distribution obtained from Fourier
spline fitting, multiplied by the control-rod penalty factor,
planar peaking factor, and integrated radial peaking
factor (INTRAD). However, we now have a 3-D APD
and a 1-D HPD that enable COLSS to eliminate the
INTRAD in the original lumped model. That
significantly reduces the critical heat flux, which is the
denominator of DNBR calculation.

The following cases are implemented to compare the
original COLSS and GMDH applied COLSS. Table II.
describe whether GMDH model applied for each module.
Spline fitting and TH calculation are the equivalent

methods to original module. Table III. results the
operation margins of MDNBR and corresponding CHF
and HHF value which are multiplied 99% confidence
limits. The results show elimination of penalties by using
3-D estimation especially increases the CHF values. The
tabulated MDNBR results are picked from the most
conservative value, which is the minimum among the
10,000 perturbed values of GMDH predictions. The
values in parentheses represent the nominal values of
MDNBR, which assume that the GMDH models are
accurate.

Table II: Application of Method Case Description

Case APD HPD
1 GMDH. GMDHs
2 GMDHa, TH calculation
3 Spline fitting GMDH,
4 (ref.) Spline fitting TH calculation

Table III: Uncertainty adjusted DNBR operation margin
(The results in parenthesis are nominal values)

Margin CHF | HHF
Case Minimum | changed.
MDNBR | From case [BTU/ft>-sec]
4., [%]
| 2.3150 13.10 250.39 107.38
(.3457) | (14.60) | (250.18) | (105.03)
2 2.2983 12.29 24413 104.15
(.3163) | (13.17) | (244.58) | (103.53)
3 1.9434 -5.05 204.93 101.47
(1.9686) (-3.82) | (196.30) | (100.28)
4 2.0468 - 187.43 84.40

The following Fig. 6. shows the axial results of DNBR
distribution with respect to the method application cases.
Fig. 7. shows HHF distribution along the axial core
height. The case 1 and 3 use the GMDH, model for
synthesizing 1-D HPD that is directly converted to same
HHF results. The HHF of case 2 is derived from APD of
GMDH, while that of case 4 is derived from the APD of
Spline fitting and the shape skewness is corrected. The
case 1 and 2 use the GMDH. model for APD, but case 3
and 4 use the Fourier spline fitting model for APD. Fig.
7. shows the distribution of CHF values derived solely
from the APD.

Referring to the HHF results in Fig. 7., the original
HHF calculation method produces axially symmetric
tuning from the top-skewed detector power input.
However, the flux level itself is not much affected from
the 3-D method. Otherwise, Fig. 8. shows that
eliminating the penalty from the evaporation enthalpy
change (h4 in Eq. (1)) significantly increases the CHF
at the top of the core. These CHF increments obviously
lead to DNBR margin increments.
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Fig. 6. Axial MDNBR distribution of GMDH applied COLSS.
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Fig. 7. Hot-pin Heat Flux distribution of GMDH applied
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Fig. 8. Critical Heat Flux distribution of GMDH applied
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Table IV: Calculation resources of COLSS with GMDH
(Processor/OS: Intel Core i7 2.3GHz, macOS 13.0.1)

COLSS with
Resources COLSS GMDH
Data reading time 20~25 1300
[ms]
Calculation time 1~2 5~10
[ms]
Memory [MB] 1.6 16~ 17

Table IV shows the calculation resources required for
GMDH applied in COLSS and as a stand-alone method.
The reading of the model from the GMDH coefficient
DB takes a few seconds, but this only occurs at the
beginning of the surveillance process. The calculation
time and memory usage are quite practical for use in the
main control room devices currently in use.

3. Conclusions

The GMDH method can be used for 3-D power
reconstruction and monitoring safety margins. In Case 1,
where separate  GMDH models were used, the
operational margin for DNBR increased by 15.01%.
However, there are internal and epistemic uncertainties
in the application of both the COLSS module and GMDH
module, such as ensuring appropriate usage of
coefficients. Other safety parameters such as ASI,
Azimuthal Tilt, and LHR values are not significantly
affected by using the 3-D method since they are global
values. When replacing penalty values with 3-D
uncertainty values, the effects of eliminating other
factors should be studied more thoroughly through the
derivation of those penalties.

This study aims to apply a training-based model to a
real-time core monitoring system. Unlike the original
monitoring system, the GMDH input data does not
require exact knowledge of the positions of control rods.
The innovative Small Modular Reactor (i-SMR) operates
with freely moving control rods, making the exact
position of the rods uncertain. The ICI detector-power-
based model could be an attractive alternative for
monitoring the i-SMR. The power synthesis GMDH
model for i-SMR core has broader domain to solve due
to various positions of control rod induced power shifts.
To train GMDH for those skewed power shape, the order
of polynomial would be higher and the number of
GMDH layer increased.
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