

GMDH-based 3-D Power

Reconstruction for Increment

of MDNBR Margin

KNS 2023 Spring meeting Dongmin Yun, Deokjung Lee

CONTACT

Ulsan National Institute of Science and TechnologyAddress50 UNIST-gil, Ulju-gun, Ulsan, 44919, KoreaTel. +82 52 217 0114Web. www.unist.ac.kr

Table of Contents

- Introduction
- 3-D Power Distribution Reconstruction via GMDH
 - GMDH
 - Validation

MDNBR Calculation

- COLSS 3D
- MDNBR Margin
- Uncertainty Analysis
 - GMDH model UQ
 - MDNBR uncertainty propagation

Conclusion

Unist <mark>Core</mark>

Introduction

GMDH-based 3-D Power Reconstruction for Increment of MDNBR Margin

COLSS Introduction

- COLSS (Core Operating Limit Surveillance System)
 - Real-time digital Core monitoring system software

FIGURE 2-3 COLSS SENSOR LOCATIONS

COLSS Introduction

Input

- Primary/Secondary coolant measurements (from Sensors)
 - Coolant Temperature, Pressure, and Flowrate
- In-core detector signal (from ICI)
- Control rod position (from CEAC)

Output

- Operation margin & exceeding alarm (to operators)
 - MDNBR, LPD, ASI, Tilt

Motivation of this study

- 1-D conservative MDNBR margin
 - COLSS is using 1-dimensional Fourier spline fitting
 - > Averaging all radial distribution of ICI signals
 - Using conservative penalty factors with respect to control rod position and azimuthal tilt
- OPR-1000, has 45 ICIs & 5 SPND per ICI

COLSS DNBR

Multi-block structure

• From Signal to DNBR

3-D Power Distribution Reconstruction

via GMDH polynomial model

GMDH

Trained regression model using Ivakhnenko polynomial

$$p(x_1, x_2) = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_1^2 + a_4 x_2^2 + a_5 x_1 x_2$$

• GMDH_A

- Reconstruct assembly axial power distribution
- GMDH_H
 - Reconstruct hot-pin power distribution

Trained regression model using Ivakhnenko polynomial

$$z^{(1)} = a_0^{(1)} + a_1^{(1)} x_1 + a_2^{(1)} x_2 + a_3^{(1)} x_1^2 + a_4^{(1)} x_2^2 + a_5^{(1)} x_1 x_2$$

$$z^{(2)} = a_0^{(2)} + a_1^{(2)} z_1^{(1)} + a_2^{(2)} z_2^{(1)} + a_3^{(2)} z_1^{(1)2} + a_4^{(2)} z_2^{(1)2} + a_5^{(2)} z_1^{(1)} z_2^{(1)}$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$z^{(5)} = a_0^{(5)} + a_1^{(5)} z_1^{(4)} + a_2^{(5)} z_2^{(4)} + a_3^{(5)} z_1^{(4)2} + a_4^{(5)} z_2^{(4)2} + a_5^{(5)} z_1^{(4)} z_2^{(4)}$$
 32th Order

- Model hyperparameters
 - N_layer = 5
 - N_cutoff = 50
 - Loss function

$$Mean\left(\frac{|P_{GMDH(xy,z)} - P_{RK(xy,z)}|}{P_{RK(xy,z)}}\right)$$

Data Acquisition

- Training data configuration
 - X_data (N_data , N_FA, 20)
 - Detector power from nearby Four ICI [MW]
 - Y_data (N_data , N_FA, 40)
 - Assembly axial power distribution [W/cm³]
 - Hot-pin power distribution

Data Acquisition

• Detector signal module in 2-step code STREAM/RAST-K

- Detector power are used
- Dataset domain
 - OPR-1000 cycle 1
 - Fixed Burnup step (9,0 GWD/MtU)
 - Core Power is sampled in 60% ~ 100%
 - CR position (R5 & R4) are set following corresponding PDIL of Core Power

 $[W/cm^3]$

3-D Assembly Power Distribution (APD) : GMDH_A

Α

21.94

21.980 -0.179 22.958 22.928 0.132 23.156 23.166 -0.042 23.302 23.340 -0.162 21.969

22.006 -0.169

Train set domain :

- BU : 9.0 GWd/MtU
- CR : 0 ~ 381 cm insert
- Power : 60 ~ 100%

• ARO case :

- BU : 9.0 GWd/MtU
- Power : 99%

Relative Error [%]

- Max : 0.277
- Min: -2.212
- RMS : 0.284

	GMDH radial Dist.													
В	С	D	E	F 9.0	G G	н	J	к		M	Ν	Ο	Р	
				22.088	23.409	23.242	23.102	22.065						15
				22.120	23.433	23.263	23.101	22.091			MAX	х 0	.277	
		24 417	33 560	36 492	35 939	34 658	35 890	36 482	33 673	26.035	MIN	√ -2	.212	14
		24.416	33.566	36.478	35.925	34.620	35.917	36.486	33.675	26.048	RMS	5 0	.284	
		0.003	-0.018	0.037	0.042	0.110	-0.076	-0.010	-0.007	-0.049				4.0
	27.860	37.339	38.844	39.487	37.193	33.574	37.195	39.522	38.909	37.416	27.773			13
	$\frac{27.849}{0.040}$	-0.082	-0.270	-0.065	-0.005	-0.068	-0.013	-0.036	-0.230	-0.002	-0.027			
26.013	37.454	41.552	40.905	37.465	37.124	28.069	37.109	37.491	40.776	41.586	37.313	24.198		12
26.020	37.458	41.673	40.792	37.465	37.387	28.117	37.387	37.485	40.781	41.657	37.353	24.206		
-0.027	-0.011	-0.292	0.277	0.000	-0.708	-0.170	-0.749	0.016	-0.014	-0.172	-0.108	-0.034		
33.315	37.291	41.185	43.145	40.041	39.073	36.283	39.028	40.020	43.125	41.198	37.174	33.150		11
-0.015	-0.035	-0.134	43.069	0.031	0.024	-0.082	-0.133	-0.027	43.074	-0.047	-0.090	-0.038		
35.760	39.312	37.207	39.606	36.075	36.744	39.882	36.776	36.067	40.088	37.188	39.278	35.753	21.951	10
35.751	39.303	37.202	40.482	36.074	36.763	39.921	36.783	36.066	40.453	37.152	39.264	35.743	22.003	
0.026	0.024	0.013	-2.212	0.003	-0.051	-0.098	-0.020	0.002	-0.911	0.097	0.034	0.027	-0.238	
35.729	37.039	38.440	39.970	36.841	39.433	36.517	39.363	36.807	39.759	38.392	37.056	35.700	23.318	9
35./28	37.020	38.410	40.004	36.848	39.421	30.502 -0.124	39.371	36.804	39.963	38.383	37.017	35.703	23.355	
34 523	33,798	28 154	36.321	39,960	36,780	41 456	36.792	39 949	36 319	28.235	33 819	34 526	23 142	0
34.528	33.871	28.193	36.320	39.949	36.744	41.453	36.741	39.948	36.313	28.185	33.870	34.531	23.166	0
-0.013	-0.215	-0.140	0.002	0.027	0.097	0.006	0.140	0.003	0.017	0.175	-0.148	-0.013	-0.104	
35.744	37.039	38.401	39.857	36.821	39.365	36.542	39.403	36.833	39.907	38.401	37.071	35.688	22.949	7
35.732	37.009	38.396	39.976	36.804	39.374	36.562	39.419	36.846	39.999	38.406	37.025	35.696	22.939	
35 770	39 265	37 161	39 742	36.073	36 774	39 923	36 733	36.048	39 927	37 187	39 287	35 732	21 925	
35.741	39.269	37.160	40.470	36.080	36.789	39.925	36.767	36.077	40.473	37.183	39.293	35.747	21.976	6
0.080	-0.008	0.003	-1.831	-0.019	-0.041	-0.006	-0.093	-0.078	-1.366	0.013	-0.014	-0.041	-0.234	
33.179	37.214	41.215	43.123	40.040	39.100	36.326	39.123	40.020	43.119	41.165	37.298	33.273		5
33.191	37.223	41.230	43.085	40.040	39.087	36.316	39.062	40.018	43.070	41.221	37.290	33.278		
24 200	37 293	-0.035	0.080	-0.001	37 320	28 158	37 262	37 438	40.865	-0.135	37.402	26.008		
24.203	37.336	41.667	40.788	37.495	37.395	28.115	37.373	37.444	40.765	41.649	37.402	26.000		4
-0.007	-0.115	0.051	-0.003	-0.011	-0.200	0.151	-0.296	-0.016	0.245	0.050	-0.010	0.008		
	27.761	37.452	38.873	39.527	37.214	33.444	37.193	39.490	38.882	37.283	27.851			3
	27.787	37.449	39.006	39.544	37.219	33.602	37.199	39.501	38.926	37.315	27.840			5
	-0.091	0.007	-0.343	-0.043	-0.013	-0.4/3	-0.010	-0.028	-0.113	-0.084	0.039			
		26.050	33.658	36.497	35.898	34.626	35.891	36.472	33.523	24.413		G	MDH	2
		0.014	-0.018	-0.090	-0.100	0.110	-0.007	0.030	-0.017	0.000			CTV	
				22.067	23.099	23.251	23.417	22.079				RA	191-K	
				22.091	23.110	23.260	23.438	22.107				Rel.	Diff.[%]	1
				-0.111	-0.040	-0.040	-0.00/	-0.1ZD						

Hot-pin Power Distribution (HPD) : GMDH_H

Train set domain :

- BU : 9.0 GWd/MtU
- CR : 0 ~ 381 cm insert
- Power : 60 ~ 100%
- ARO case :
 - BU : 9.0 GWd/MtU
 - Power : 99%

- Relative Error [%]
 - RMS : 0.04

3-D Assembly Power Distribution (APD) : GMDH_A

А

25.857

25.864 -0.027 27.267 27.263

0.017 27.538 27.527 0.041 27.648 27.694 -0.168 25.873

25.894 -0.080

Train set domain :

- BU : 9.0 GWd/MtU
- CR : 0 ~ 381 cm insert
- Power : 60 ~ 100%

Rodded case :

- BU : 9.0 GWd/MtU
- CR: 275 cm inserted
- Power : 67%

Relative Error [%]

- Max : 0.874
- Min : -0.688
- RMS : 0.142

	GMDH radial Dist.													
в	C	D	BU :	: 9.0 F	00 C			ν, ι_ κ	Z: 38	у М	N	0	Р	
_	-	-	_	-	-		5		_			-	-	
				25.060	27 703	27.648	27 / 15	25 881	1					15
				25.926	27.803	27.653	27.399	25.891			MA	x 0.3	874	
				0.129	-0.037	-0.019	0.056	-0.039			MIN	v -0.	688	1.4
		28.182	38.784	42.625	42.206	41.146	42.195	42.610	38.913	30.066	RM	S 0.	142	14
		-0.022	38.792	42.633	42.202	41.138	42.192	42.639	38.914	0.012				
	31.956	42.824	45.215	46.106	43.737	39.808	43.724	46.163	45.200	42.874	31.902			13
	31.989	42.822	45.090	46.109	43.732	39.812	43.734	46.133	45.144	42.875	31.909			
	-0.103	0.004	0.277	-0.006	0.012	-0.010	-0.023	0.065	0.124	-0.002	-0.022			12
30.032	42.924	47.993	45.927	43.634	43.115	34.084	43.012	43.659	45.854	47.851	42.801	27.953		12
-0.005	0.002	0.267	-0.063	-0.018	-0.142	-0.075	-0.364	-0.007	-0.252	0.011	-0.005	0.016		
38.524	42.890	47.540	49.735	46.681	46.846	43.534	46.771	46.699	49.752	47.453	42.778	38.344		11
38.523	42.888	47.527	49.688	46.698	46.806	43.538	46.823	46.699	49.670	47.500	42.777	38.344		
0.001	0.005	0.028	0.094	-0.036	0.086	-0.008	-0.112	-0.000	0.164	-0.100	0.002	-0.001	25.051	10
42.148	45.875	43.349	45.103	42.408	43.873	47 366	43.905	42.440	45.292	43.292	45.843	42.339	25.851	10
0.874	-0.009	0.003	-0.081	0.006	-0.009	0.012	0.014	-0.024	0.314	0.005	0.018	-0.152	-0.152	
41.970	43.001	45.735	46.810	43.956	46.369	43.089	46.322	43.932	46.830	45.664	43.023	41.944	27.673	9
41.982	42.893	45.731	46.916	43.965	46.380	43.058	46.324	43.913	46.881	45.691	42.891	41.951	27.712	
-0.028	0.252	0.010	-0.225	-0.021	-0.024	0.070	-0.003	0.042	-0.108	-0.059	0.306	-0.017	-0.143	
41.020	40.502	33,853	43.529	47.412	43.203	48.730	43.270	47.374	43.517	34.009	40.497	41.029	27.539	8
0.003	0.033	0.274	-0.004	0.016	-0.017	-0.078	0.007	-0.061	-0.014	0.485	0.024	0.002	0.046	
41.976	43.011	45.693	46.887	43.911	46.331	43.019	46.372	43.958	46.754	45.717	42.865	41.950	27.265	7
41.985	42.886	45.706	46.892	43.913	46.327	43.059	46.377	43.963	46.910	45.720	42.894	41.944	27.281	
41 708	0.269	-0.030	-0.011	-0.000	0.010	47 335	43 863	-0.012	-0.333	-0.000	-0.007	12 304	-0.057	
41.767	45.839	43.291	45.177	42.409	43.913	47.367	43.882	42.400	45.193	43.327	45.869	42.394	25.860	6
-0.143	0.003	-0.017	-0.688	-0.006	0.015	-0.066	-0.043	-0.009	-0.475	-0.000	-0.023	-0.047	-0.010	
38.381	42.836	47.514	49.753	46.701	46.850	43.545	46.780	46.678	49.596	47.519	42.888	38.477		5
	42.795	47.513	49.682	46.709	46.831	43.541	46.805	46.688	49.669	47.507	42.874	38.476		_
27 956	42 792	47 885	46 146	43 652	43 285	34 067	43 051	43 623	46 017	47 704	42 849	30 020		
27.954	42.783	47.856	45.974	43.673	43.175	34.108	43.169	43.620	45.926	47.840	42.865	30.020		4
0.009	0.020	0.061	0.372	-0.047	0.256	-0.119	-0.273	0.007	0.197	-0.285	-0.039	-0.001		
	31.938	42.942	45.231	46.130	43.747	39.861	43.744	46.098	45.109	42.762	31.948			3
	31.915	42.910	45.152 0 1 7 4	46.142	43.757	39.826	43.738	46.098	45.066	42.762	31.980			0
	0.070	30.069	38.892	42.658	42.165	41.153	42,166	42.630	38,736	28,182	0.101	I		
		30.067	38.893	42.652	42.168	41.146	42.164	42.627	38.744	28.186		GM	1DH	2
		0.007	-0.002	0.014	-0.007	0.018	0.005	0.007	-0.021	-0.014		RA	ST-K	
				25.880	27.363	27.642	27.812	25.942					m	1
				-0.046	-0.171	-0.030	0.009	0.112				Rel. I	Diff.[%]	

Hot-pin Power Distribution (HPD) : GMDH_H

Train set domain :

- BU : 9.0 GWd/MtU
- CR : 0 ~ 381 cm insert
- Power : 60 ~ 100%
- Rodded case :
 - BU : 9.0 GWd/MtU
 - CR: 275 cm inserted
 - Power : 67%

• RMS : 0.07

3-D Assembly Power Distribution (APD) : GMDH_A

Power conversion via Fourier spline (Block M)

• Unit conversion W/cm³ -> BTU/ft³-sec

#	COLSS Fourier Spline	GMDH
1	Averaging PHI(45,5)-> CHI(1,5)	Reshape PHI(45,5) -> PHIG(177,20)
2	Calculation Fourier spline fitting	Calculation of pre-trained GMDH
3	$L(J+1) = 100 \times \frac{CHI(J)}{\sum_{J=1}^{5} CHI(J)}$ $A(I) = \sum_{J=1}^{7} [H(I,J) \times L(J)]$ $H(I,J) = \text{Fourier weighting coefficients}$ $APKD(I) = \sum_{K=1}^{5} [SPLIN(I,K) \times A(K)]$ $SPLIN(I,K) = \text{Fourier series matrix}$ $APKD(I) = 40 \text{ node axial power dist.}$	$APKD3D(I_{xy}, I_z) = GMDH(PHIG(I_{xy}, :))$ $APKD(I) = APKD3D(I_{xy,max}, I_z)$

MDNBR Calculation

COLSS 1-D vs 3-D

DNBR

Departure of Nucleate Boiling Ratio

$$MDNBR = \frac{q_{Crit}^{\prime\prime}}{F_{v} \times (q_{hot-pin}^{\prime\prime})}$$

$$q_{chf}^{\prime\prime} = \dot{m}h_{fg}(T_{sat} - T_{sub})$$
, $F_v = \frac{Q_{actual}}{q_{uniform}^{\prime\prime} \times area}$

Validation case configuration

- COLSS sample case
 - 9.0 GWD/MtU, 65% Core relative power, ARO from COLSS sample input
 - Input signal : Detector power from RAST-K
 - GMDH-results just follow the RAST-K results

ASI [-]		
Fourier	GMDH _A	RAST-K
-0.0539	-0.0647	-0.0647

Azimuthal Tilt [-]						
Fourier	GMDH _A	RAST-K				
0.02914	0.03090	0.03090				

COLSS MDNBR Calculation

DNBR margin increment test

COLSS MDNBR Calculation

- Critical Heat Flux (CHF)
 - CHF are resulted from APD and coolant information
 - Fourier spline method with integral radial penalty factor
 - 3-D GMDH method without penalty factor

CASE	APD	HPD
1	GMDH _A	GMDH _H
2	GMDH _A	TH calc
3	Fourier	GMDH _H
4(ref)	Fourier	TH calc

COLSS MDNBR Calculation

Hot-pin Heat Flux (HHF)

- HHF are resulted from APD and coolant information
 - TH calculation integrates TH properties to APD
 - GMDH method directly converts HPD to HHF

CASE	APD	HPD
1	GMDH _A	GMDH _H
2	GMDH _A	TH calc.
3	Fourier	GMDH _H
4(ref)	Fourier	TH calc.

DNBR margin increment by case

CASE APD		HPD	MDNBR	Rel. Margin Increment	CHF [RTI1/	HHF ft²-sec]	Position of DNBR [cm]
1	GMDH _A	$\mathbf{GMDH}_{\mathrm{H}}$	2.3457	14.60%	250.18	105.03	320
2	GMDH _A	-	2.3163	13.17%	244.58	103.53	340
3	Fourier	GMDH _H	1.9686	-3.82%	196.30	100.28	320
4(ref)	Fourier	-	2.0468	-	187.43	84.40	340

Uncertainty Analysis

Best estimate

GMDH Uncertainty quantification

• Model uncertainty using Test dataset (N_test = 4,000)

• Calculation of relative difference between Model Prediction (GMDH) and Y-data (RAST-K)

$$RD[\%] = \frac{P_{GMDH(xy,z)} - P_{RK(xy,z)}}{P_{RK(xy,z)}} \times 100\%$$

- Shapiro-Wilk Normality test of RD histogram (p-value = 0.001)
 - Non-parametric uncertainty quantification

99% Non-parametric interval						
Model	Lower Limit (20 th Value)	Upper Limit (3980 th Value)				
GMDH _A	-0.3889 %	0.3505 %				
(for 3-D APD)						
GMDH _H	-0.6593 %	0.7438 %				
(for HPD)						

Uncertainty adjusted COLSS MDNBR

MDNBR from perturbed GMDH results

- 10,000 perturbation of model
 - $\widetilde{y}_{A} = \text{GMDH}_{A} + N(0, \sigma^{*})$ $\rightarrow \sigma^{*} = \sigma_{lower,A}/k_{99\%}$

$$-\widetilde{y}_{H} = \mathbf{GMDH}_{H} + N(\mathbf{0}, \boldsymbol{\sigma}^{*})$$

 $\sigma^* = \sigma_{lower,H}/k_{99\%}$

Conservatively lowest MDNBR values are chosen

Uncertainty adjusted COLSS MDNBR Calculation

DNBR margin increment by case

• The results in parenthesis are nominal value

CASE		חחח	MONIDO	Rel. Margin	CHF	HHF	
CASE	APD	ΠΡυ	MUNDK	Increment	[BTU/ft ² -sec]		
1	GMDH _A	GMDH _H	2.3150 (2.3457)	13.10% (14.60%)	250.39 (250.18)	107.38 (105.03)	
2	GMDH _A	-	2.2983 (2.3163)	12.29% (13.17%)	244.13 (244.58)	104.15 (103.53)	
3	Fourier	GMDH _H	1.9434 (1.9686)	-5.05% (-3.82%)	204.93 (196.30)	101.47 (100.28)	
4(ref)	Fourier	-	2.0468	-	187.43	84.40	

Computing resources (Time & memory)

Computing Resources	COLSS original (Case 4)	COLSS w. GMDH (Case 1)	
Data reading time [ms]	20 ~ 25	1,300	
Calculation time [ms]	1~2	$5 \sim 10$	
Used memory [MB]	1.6	16 ~ 17	
13E			

Conclusion

- The operational margin for MDNBR, as calculated via 3-D power reconstruction GMDH, increased by 13.10%, including model uncertainty.
- Unlike the COLSS method, the GMDH method does not need the information of control rod positions when synthesizing power distribution.
- The required memory of GMDH model is about 20MB, the specification of FPGA for COLSS should match that in practical.

Reference

- [1] Combustion Engineering, Inc., Overview Description of the Core Operating Limit S upervisory System (COLSS), CEN-312-NP, Rev. 01-NP, 1986.
- [2] Ivakhnenko, A.G., The Group Method of Data Handling a Rival of the Method of Stochastic Approximation, Soviet Automatic Control Journal, 13, 43-55, 1968.
- [3] Jiwon Choe, Sooyoung Choi, Peng Zhang, Jinsu Park, Wonkyeong Kim, Ho Cheol S hin, Hwan Soo Lee, Ji-Eun Jung, Deokjung Lee*, "Verification and validation of STRE AM/RAST-K for PWR analysis," Nuclear Engineering and Technology, ISSN 1738-573 3, <u>https://doi.org/10.1016/j.net.2018.10.004</u>, 2018.
- [4] Moon-Ghu Park, Generation of Optimal Basis Functions for Reconstruction of Pow er Distribution, Transactions of the Korean Nuclear Society Spring Meeting, 2014.
- [5] Tetyana I. Aksyonova, ROBUST POLYNOMIAL NEURAL NETWORKS IN QUA NTATIVE-STRUCTURE ACTIVITY RELATIONSHIP STUDIES, Systems Analysis M odelling Simulation, Vol. 43, No. 10, pp.1331-1339, 2003.
- [6] Barmak Mostofian, Error Analysis for Small-Sample, High-Variance Data: Caution s for Bootstrapping and Bayesian Bootstrapping, Biophysical Journal, Volume 116, Issu e 3, Supplement 1, pp. 140a, ISSN 0006-3495, <u>https://doi.org/10.1016/j.bpj.2018.11.779</u>., 2019.

#