2023 한국원자력학회 춘계 학술발표회 2023년 5월 17-19일, 제주 ICC

PM-HIP Manufacturing Method for Nuclear Reactor Components

장진성¹, 주승호^{1, 2}, 김민철¹, 김종민¹

¹ 한국원자력연구원 ² 연세대학교 재료안전기술개발부 신소재공학과

배경 (1/2) : Performance of PM-HIP Alloys in Nuclear Environments

- PM-HIP 소재는 동일 합금의 주조재 혹은 단조재에 비하여 더 우월한 기계적 특성을 보여줌 (Morrison et al., 2019; Atkinson and Davies, 2000; Rao et al., 2003; Metals and Ceramics Information Center Report No, 1977; Shulga, 2012; A. v. Shulga, Euro PM,2014; Barros et al., 2022)
- 2. Synchrotron X-ray in situ 인장시험 수행 결과 Wrought 316L강 및 니켈기 625 합금의 경우 PM-HIP

 소재가 결정립 전반에 걸쳐서 더 균일한 응력 분포를 보여주며 (Guillen et al., 2018); 결정립 크기가

 더 미세하여 더 높은 항복응력 및 인성을 보여줌 (Atkinson & Davies, 2000; Guillen et al., 2018)
- 3. Alloy 625 및 690 합금의 경우 800℃/1,000 hr 열시효한 조건 하에서 PM-HIP 소재가 열적 안정성이 더 우수하고 또한 고온 기계적 강도도 더 높게 나타남 (Bullens et al., 2018; Getto et al., 2019)

배경 (2/2)Performance of PM-HIP Alloys in Nuclear Environments

Specimen	Species	dpa	Temp.	Observation	Ref.
316LN ✓ PM-HIP ✓ Wrought		2.5	290	 Consistent Irradiation-induced Y.S ↑, Ductility ↓; No Work hardening PM-HIP Steel, a Shorter av. LCF Life only 30 % Fracture Toughness of the Wrought Steel, [O] Content 	Lind 2000 Lind 2001
316LN ✓ Rolled Plate ✓ Solid HIP ✓ PM-HIP	neutron	10	265	 Uniform Elongation Similar across all three Specimens HIP Specimens (Solid & PM) Greater Irradiation Hardening, Greater Loss of Fracture Toughness than the Rolled Plate Rolled Plate & PM-HIP Specimens, Reduced Strain Hardening Capacity; the Solid HIP Specimen Maintains Full Strain Hardening Capacity 	Rodchenkov 2000
Alloy 625 ✓ PM-HIP ✓ Forged	4.5 Mev Fe ²⁺ ion	50 100	400 500	 Dislocation-type Defects (Loops & Lines) Density, Consistent in both the PM-HIP and Forged Specimens at all Irradiation Conditions. Ratio of Loops to Lines, Depending on the Initial Sink Strength, which was Higher in Forged 625. Higher Sink Strength Delayed Dislocation Loop Growth & Unfaulting, but Ultimately Did Not Change Total Dislocation-type Defect Density. Microstructural Evolution w/ Nanoindentation Hardening. 	Clement 2022
F/M Steel F82H ✓ PM-HIP ✓ Rolled Plate		2.5 – 5	300	 PM-HIP & Rolled Plate Specimens Identical DBTT PM-HIP, Larger Irrinduced DBTT Shift & Reduction in USE 	van Osch 1996
Martensitic Steel PH13-8Mo (Fe-12Cr-8Ni-2Mo) ✓ PM-HIP only	neutron	2	200 300	 Little Effect of on Fatigue Crack Propagation 	Jong 2011

Adoption of PM-HIP Specifications into ASME B&PVC

Applicable Materials	ASTM Specification	ASME Code Case or Section	Nuclear Use
316L SS	ASTM A988	Code Case N-834	Approved for Use by the NRC in Regulatory Guide 1.84 for Class 1 Components
Duplex SS	ASTM A988	Code Case N-2840	No Nuclear Approval; N-2840 Endorses for Use under ASME Code Section VIII, Division 1
Cr-Mo Steels (Grade 91 & Grade 22)	ASTM A989	Code Case N-2770	No Nuclear Approval.; N-2770 Endorses for Use under ASME Code Section I
Nonferrous Alloys (AL-6XN, Alloy 625, Alloy 718)	ASTM B834	Section II, Part A	Not Endorsed by any ASME Code Book Sections, including Nuclear
Low Alloy Steels (A508)	None	None	

<u>5</u>

Chemical Composition of SA508 Gr.3 Steel Sample, KAERI

	С	Mn	Р	S	Si	Ni	Cr	Мо	V	Cu	ΑΙ	N	ο
ASTM	0.25	1.20 1.50	0.025	0.025	0.40	0.40 1.00	0.25	0.45 0.60	0.05	0.02	0.030		
상용 (Forged)	0.20	1.34	0.007	0.002	0.20	0.89	0.20	0.50	0.002	0.02	0.02	0.011	0.039
A6 (GA)	<u>0.51</u>	<u>1.07</u>	0.005	0.004	0.345	0.87	0.198	0.51	0.002	0.023	0.008	0.0049	0.056
E6 (EiGA)	0.206	<u>1.13</u>	0.006	0.003	0.214	0.87	0.201	0.50	0.002	0.023	0.018	0.0077	0.046

Microhardness Measurement on PM-HiP SA 508 Samples

micro Vickers Hardness of PM-HIP SA508 Samples

EPRI SMR Vessel Manufacture & Fabrication, Phase 2 (2022 ~ ?) Task 7. ASME Boiler & Pressure Vessel Code Development

- 향후 원자력 부품 생산/제조자들이 개발 기술들을 제대로 활용할 수 있도록 하기 위해서는 ASME BPVC에서, 그리고 LWR 및 SMR 대상 경우 EPRI Utility Requirements Document (URD), GEN IV 등 비경수로 대상 경우 Owners Requirement Document for non-LWRs (GEN IV)에서 사전 검토, 승인 필요
- 새로운 Code Cases가 필요한 부분도 있고, 기존 Code 해당 Section 내 어구를 단순 수정하면 되는 부분도 있을 것임
- 새로운 Code Case 및 ASME 수정에 필요한 확실한 (Definitive) 데이터 및 정보 준비, 제공 필요
- 1. Elimination of the EB Weld via Solution Annealing

2. Powder Metallurgy-HIP of 508 Low Alloy Steel

- 현재 ASME Section II에서는 PM-HIP 기술로 제조된 30여 종류의 합금들에 대한 검토를 진행하고 있는데 Ferritics, Austenitics, 니켈합금 등이 포함되어 있으나 SA508 재료는 포함되어 있지 않음; PM-HIP SA508 RPVs 가 Section III에 포함되기 위해서는 상당한 연구개발 수행 필요
 - ✓ 여러 Heats의 PM-HIP SA508 부품 제조
 - ✓ 충분한 파괴인성 평가 (Characterization)
 - ✔ (중성자) 조사 시험 평가
- 3. Diode Laser Cladding (DLC)
- 4. Bulk Additive Manufacturing (BAM)

Small Modular Reactor Vessel Manufacture and Fabrication: Phase 1-Progress. EPRI, Palo Alto, CA: 2019. 3002015814.

Examples of EPRI Projects on PM-HIP Technology

Year		참여 기관	Sponsor Program	Title
2012 05	Final Report	EPRI CPP X-Gen Eng.		Program on Technology Innovation: Manufacture of Large Nuclear & Fossil Components Using PM & HIP Technologies
2016 03	Final (Yr. 3.5)	EPRI GE-Hitachi CPP (Ohio Univ.)	DOE NE NEET AMM	Innovative Manufacturing Process for Nuclear Power Plant Components via PM-HIP
2022 04	Phase 1 (Yr. 4)	EPRI Nuclear AMRC Bridger Welding Eng. Synertech PM		SMR Vessel Manufacture & Fabrication

목표: 2/3 Scale SMR (NuScale) Pressure Vessel 주요 부품 (Vital Assemblies) 제조

EPRI PM-HIP 주요 중간 결과

- 1. 여섯 개의 Transition Shell Segments 제조 완료; 2022년 4분기에 용접 계획
 - ✓ 여러 온도에서의 진공 어닐링 (VA; Vacuum Annealing) Segments
 - ✓ 대기용해 가스 분무 (AM-GA; Air Melted-Gas Atomized) 분말 이용; 연구실 시험에서는 Charpy Toughness 135 J 목표 달성
 - ✓ 하지만 진공 열처리 규모를 키우면서 일관된 Toughness를 얻기 어려운 것으로 보임 (Consistent Toughness Properties while Scaling up the VA Technology have proven Elusive to date).
- 진공유도용해 가스 분무 (VIM-GA; Vacuum Induction Melted-GA) 분말 활용 경우 Toughness 특성이 훨씬 나아진 것 확인; 두 개의 Upper Head Section VIM-GA 분말로 제조 예정
- 3. NuScale Power Lower Reactor Head의 Demonstrator Assembly 결합 성공; PM-HIP 기술로 제작한 두 개의 반쪽 Lower Head를 성공적으로 용접하고, 단조 공정으로 제작한 Flange 용접
- 4. A New Slope-out Welding Procedure
- 5. All Diode Laser Cladding Coupons Generated in This Study

<u>12</u>

Preparation of PM-HIP Transition Shell

Transition Shell Section Capsule (a) Initial (b) Completed

Transition Shell Section Capsule ready for Transportation following HIP Process with Frame

Transition Shell Segments Properties

Transition Shell Segment	#1	#2	#3	#4	#5	#6
AM-GA Powder Heat #	818880	819379	819369	820052	820536	819188 820052 820078
As-Received Powder Oxygen, ppm	100	90	160	100	130	NA
Laboratory Charpy Impact Results, J As-Received Powder Following Vacuum Anneal *	115 155	98 107	92 106	118 141	136 NR	NA NA
Vacuum Anneal Temp. (°C)	No		80	0		650
Oxygen, ppm for Plugs above						
Upper Region	200	140	130	110	101	86
Middle Region	80	110	120	90	88	123
Lower Region	90	100	120	100	85	105
Witness Sample	NA	80	100	80	NR	NR
Charpy Toughness, J						
Plugs from Shells after Heat Treatment						
Upper Region	86	73	52	92	56	94
Middle Region	95	110	73	95	121	75
Lower Region	75	106	91	115	97	103
Witness Sample (150 mm ³)	92	106	107	138	133	103

Photographs of Transition Shell Segment

Transition Shell Segment #5

Transition Shell Article 6 following Plug Removal

VIM Melt Chemistry, NOT of Powders

ID	Route	PSD (µm)	С	Si	Mn	Ρ	S	Cr	Мо	Ni	AI	Ν	O (ppm)
ASME Spec. min	-	-			1.20				0.45	0.40			
ASME Spec. max	-	-	0.25	0.40	1.50	0.025	0.025	0.25	0.60	1.00	0.025		
131385	VIM-GA	53-420	0.178	0.02	1.43	<0.005	<0.001	0.22	0.53	0.94	<0.01	0.004	0.003
131386	VIM-GA	53-420	0.173	0.09	1.32	<0.005	<0.001	0.15	0.53	0.94	<0.01	0.003	0.002

VIM-GA by Sandvik

PSD : Powder Size Distribution

Table 4-6 VIM-GA Powders Chemistries (#022 EPRI Yr. 4)

	C	hemi	stry	of 2	VIM	Melt	& 6 H	IP Ca	apsul	e	VIM-0	GA by S	andvik
ID	Route	PSD (µm)	С	Si	Mn	Р	S	Cr	Мо	Ni	AI	N	0
ASME Spec. min	-	-			1.20				0.45	0.40			
ASME Spec. max	-	-	0.25	0.40	1.50	0.025	0.025	0.25	0.60	1.00	0.025		
131385	VIM-GA	53-420	0.178	<u>0.02</u>	1.43	< 0.005	< 0.001	0.22	0.53	0.94	< 0.01	0.004	0.003
2A	Hot Degas	Full	0.163	0.02	1.41			0.24	0.53	0.95	< 0.01	0.020	0.021
2B	RT Degas	+ 53	0.155	0.02	1.40	< 0.005	< 0.001	0.24	0.53	0.95	< 0.01	0.022	0.020
2C	Hot Degas	+ 53	0.161	0.02	1.37			0.23	0.50	0.90	< 0.01	0.024	0.020
131386	VIM-GA	53-420	0.173	<u>0.09</u>	1.32	< 0.005	<0.001	0.15	0.53	0.94	< 0.01	0.003	0.002
9A	Hot Degas	Full	0.164	0.09	1.30			0.16	0.53	0.95	< 0.01	0.024	0.020
9B	RT Degas	+ 53	0.162	0.09	1.29	< 0.005	< 0.001	0.15	0.53	0.95	< 0.01	0.024	0.015
9C	Hot Degas	+ 53	0.165	0.09	1.29			0.16	0.53	0.99	< 0.01	0.024	0.014

PSD : Powder Size Distribution

Table 4-6 & 4-7 Chemistry of VIM-GA Powders & from 6 HIP VIM Capsules (#022 EPRI Yr. 4)

<u>19</u>

Chemistry of EPRI (VIM–GA) & KAERI Works

ID	Route	PSD (µm)	С	Si	Mn	Р	S	Cr	Мо	Ni	AI	Ν	Ο
131385	VIM-GA	53-420	0.178	<u>0.02</u>	1.43	< 0.005	< 0.001	0.22	0.53	0.94	< 0.01	0.004	0.003
2A	Hot Degas	Full	0.163	0.02	1.41			0.24	0.53	0.95	< 0.01	0.020	0.021
2B	RT Degas	+ 53	0.155	0.02	1.40	< 0.005	< 0.001	0.24	0.53	0.95	< 0.01	0.022	0.020
2C	Hot Degas	+ 53	0.161	0.02	1.37			0.23	0.50	0.90	< 0.01	0.024	0.020
131386	VIM-GA	53-420	0.173	<u>0.09</u>	1.32	< 0.005	<0.001	0.15	0.53	0.94	< 0.01	0.003	0.002
9A	Hot Degas	Full	0.164	0.09	1.30			0.16	0.53	0.95	< 0.01	0.024	0.020
9B	RT Degas	+ 53	0.162	0.09	1.29	< 0.005	< 0.001	0.15	0.53	0.95	< 0.01	0.024	0.015
9C	Hot Degas	+ 53	0.165	0.09	1.29			0.16	0.53	0.99	< 0.01	0.024	0.014
상용	ESR & Forgeo	I	0.20	0.20	1.34	0.007	0.002	0.20	0.50	0.89	0.02	0.011	0.039
A6, GA	Hot Degas	Full	0.51	0.345	1.07	0.005	0.004	0.198	0.51	0.87	0.008	0.0049	0.056
E6, EIGA	Hot Degas	Full	0.206	0.214	1.13	0.006	0.003	0.201	0.50	0.87	0.018	0.0077	0.046 2

NRC, Technical Information (1/2) PM–HIP A508 Material–Specific; Impact Toughness

NRC Ranking of Significance : High

- PM-HIP 방법으로 일관성 있는 충격 인성 허용치 (Consistent & Acceptable)를 갖는 두꺼운 대형 저합금강 부품 제조는 매우 어려운 과제 (a Significant Challenge).
- 제조 부품의 충분한 밀도를 얻기 위하여, 그리고 불순물은 최대한 낮추고 적절한 인성을 얻을 수 있도록 금속분말 제조, 취급 및 저장, 탈기 공정 및 HIP 공정 등 모든 과정에 걸쳐 일관된 공정 관리 필요.

Key Technical Information

- 1. PM-HIP 제조 대형 부품의 경우 현재까지는 부품 전반에 걸쳐 충분한 충격 인성을 일관되게 보여주지 못하고 있음.
- 2. 지금까지 보여준 충격 인성 값이 충분히 높지 않고 또 인성 값의 변화 폭이 크게 나타나는 것은 제조 부품의 미세조직 및 화학조성의 편차 (Variations)때문인 것으로 보임.
- ✤ PM-HIP 저합금강 부품의 낮은 충격 인성 값은 산소 오염 혹은 농도 편차에 기인하는 것으로 보임.
 - 금속분말 제조, 취급, 저장 및 탈기공정 단계를 효과적으로 잘 수행함으로써 PM-HIP 대형 부품의 산소 및 여타 불순물을 제대로 조절하는 것이 필요함.
 - HIP 공정 변수, 열처리 조건의 추가적 최적화를 통하여 더 나은 충격 인성 및 고른 결과치를 얻을 수 있을 것으로 보임.
 - PM-HIP A508 부품이 단조재와는 그 거동이 다른 새로운 제조품 (New Product Form)으로 판단되는 경우 PM-HIP A508 소재의 허용 (Acceptable) Charpy 충격치와 파괴 인성 특성 사이의 상관관계를 구하여 보여주어야 할 것임.

NRC Technical Assessment 2022

NRC, Technical Information (2/2) PM–HIP A508 Material–Specific; Irradiation Effects

NRC Ranking of Significance : High

- 저합금강 원자력 압력용기에 대한 (중성자) 조사 영향은 중요한 Aging 효과임.
- PM-HIP 저합금강 재료에 대한 중성자 조사 결과는 매우 희소함.

Key Technical Information

- 가공된 저합금강은 (LAS in the Wrought Condition) 경수로 운전 온도 및 중성자 환경 하에서 (중성자) 조사에 민감하며, 조사 취화 등 조사 영향을 많이 받음.
- PM-HIP 저합금강의 경우 비슷한 조성 및 미세조직을 갖는 가공 강의 조사 영향과 유사할 것으로 기대되지만, 이 기대를 확인시켜 줄 수 있는 데이터 필요.

References

- 1. Small Modular Reactor Vessel Manufacture and Fabrication: Phase 1-Progress (Year 4) EPRI, Palo Alto, CA, USA: 2021. 3002023900.
- 2. Donna Post Guillen, Janelle P. Wharry, Gregory K. Housley, Cody D. Hale, Jason V. Brookman, David W. Gandy, Experiment design for the neutron irradiation of PM-HIP alloys for nuclear reactors, Nuclear Engineering and Design 403 (2023)
- 3. David T. Hoelzer, ORNL/SPR-2022/2421, The Use of Powder Metallurgy and Hot Isostatic Pressing for Fabricating Components of Nuclear Power Plants, ORNL, May 2022
- 4. NRC Technical Assessment of Powder Metallurgy-Hot Isostatic Pressing B. Smith Jun 17, 2022
- 5. Megan Carter, et al., On the Influence of Microstructure on the Neutron Irradiation Response of HIPed SA508 Steel for Nuclear Applications, J. Nucl. Mater. 559 (2022) 153435
- 6. D. Gandy, C. Stover, EPRI, Advanced Manufacturing to Enable the Next Generation of Nuclear Plants, AMM Annual Program Review Dec. 4-6, 2018
- 7. D. Gandy, EPRI, Advanced Technology for Large-Scale (ATLAS) Powder Metallurgy–Hot Isostatic Pressing Technology Assessment, July 2016

감사합니다.

본 연구는 '고리1호기 1차 계통 압력경계 재료 실증체계 구축' 과제의 일환으로 수행되었으며, 제조 시편의 Microhardness 측정은 한국생산기술연구원 대경본부의 도움으로 이루어졌습니다.