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1. Introduction 

 
In recent days, various advanced reactors have gained 

increasing interest due to several strengths such as 

inherent safety and sustainability. The representative 

advanced rectors are heat pipe cooled micro reactors 

such as MegaPower [1] and pebble-bed reactors such as 

HTR-PM [2]. These reactors have irregular geometric 

structures which are significantly different from the 

lattice-based structures of typical LWRs. 

PRAGMA is a GPU-based continuous-energy MC 

code being developed at Seoul National University, 

which has a tailor-made rectilinear geometry model and 

its optimized features for typical PWR applications [3]. 

For extensibility of the scope of applications from 

PWRs to advanced reactors, PRAGMA exploits the 

hardware-accelerated NVIDIA ray tracing engine OptiX 

[4] rather than the constructive solid geometry (CSG) 

based module for efficient neutron tracking on GPUs. 

With the extension of geometry modeling, PRAGMA 

retains the general applicability by employing primitive-

based geometry [5] and triangle-based unstructured 

mesh geometry [6] aided with OptiX. 

However, there is still an obstacle, known as the self-

intersection issue, to applying the graphics ray tracing 

library to physical simulations without any treatments. 

This issue is a well-known and notorious problem in 

graphics ray tracing due to round-off errors in the 

floating-point arithmetic. In the MC simulation, it can 

cause a neutron to be stuck on a surface, and it triggers 

performance degradation since additional manipulations 

are required to make the neutron deviate from the 

surface. 

This paper presents a simple and robust ray casting 

algorithm to avoid self-intersection by adopting an Any-

Hit module of OptiX. The irregular geometry treatment 

in PRAGMA is described briefly. A ray tracing pipeline 

and a traversal process are introduced and solutions for 

preventing self-intersection issues are demonstrated on 

unstructured triangle-based mesh geometry with fine 

granularity.  

 

2. Unstructured Geometry Treatment in PRAGMA 

 

An irregular geometry is represented based on a CAD 

mesh-based geometry model in PRAGMA. A nuclear 

reactor structure is modeled using only four types of 

basic mesh cells such as tetrahedron, hexahedron, 

wedge and pyramid cells. For an efficient modeling of a 

curve with meshes, a volume correction method was 

employed to preserve calculation accuracy using a few 

mesh. 

The OptiX ray tracing API was adopted in PRAGMA 

to calculate a distance to the nearest surface for a 

neutron during a MC simulation. The OptiX is a 

CUDA-centric ray tracing API optimized for NVIDIA 

GPUs, which is employed in graphics or even physical 

simulations. For a mesh-based geometry treatment in 

MC simulation, the distance calculations are significant 

burdens since each region is divided into several mesh 

cells. The distance calculation performance can increase 

significantly by adopting the CUDA-based ray tracing 

API OptiX. 

 

3. OptiX Ray Tracing Pipeline 

 

The OptiX ray tracing API provides a simple and 

flexible programmable pipeline for ray tracing. The 

OptiX provides a program that is a block of executable 

code on the GPU and represents a particular shading 

operation. The ray tracing pipeline in OptiX mainly 

consists of a ray generation, an intersection program, 

shading, and a miss program. A virtual ray invoked 

from the ray generation program traverses scene 

geometry in the pipeline and finds the intersections with 

primitives as described in Fig. 1. 

 

Fig. 1 Diagram of OptiX ray tracing pipeline. 
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When a ray is generated from a point, potential 

intersections are determined based on bounding boxes 

of primitives as illustrated in Fig. 2. Selecting potential 

intersections in the traversal process is fixed-function 

and hardware-accelerated operations which cannot be 

controlled by a developer. 

 

Fig. 2. Diagram of selecting potential intersections. 

For all potential surfaces, an intersection and Any-Hit 

program are invoked during traversal. The intersection 

program takes a ray-primitive intersection examination 

and calculates a distance to the surface from the point. It 

is a user-provided program and can be implemented for 

all mathematically expressible primitives. 

The Any-Hit program is called when a traced ray 

finds a potentially-closest intersection point for graphics 

shadow computation. However, in the MC application, 

this program is generally redundant since only the 

distance to the nearest surface from the point is utilized 

in the simulation process. 

Based on the distance calculated by the intersection 

program, the closest surface is determined among the 

potential intersections. If the ray does not hit any 

surface along the ray trajectory, a miss program is 

invoked. 

 

4. Self-Intersection Issue in Ray Tracing 

 

In the OptiX ray tracing library, rays are represented 

as parametric lines. This representation calculates the 

endpoint of the ray using ray origin, direction, and the 

parameter that indicates distance. For the ray tracing 

simulation, it forms a ray path by starting at the light 

source and intersecting the ray with the scene geometry. 

As the surface is hit, a new ray is generated on that 

surface to continue the tracing. 

Theoretically, this new ray should not detect the 

intersection with the same surface again since the zero-

distance is excluded in parametric representations. 

However, due to errors in the floating-point arithmetic, 

the new ray may intersect a given point repeatedly with 

an infinitesimally small distance parameter. This 

phenomenon is called a self-intersection. 

To prevent a self-intersection caused by the floating-

point representation, a threshold parameter called scene 

epsilon is utilized in the ray tracing library. It neglects 

all intersections with distance parameters smaller than a 

preset value, which is defined to be small enough to 

discover actual intersections. 

 

5. Self-Intersection Issue in MC Simulation 

 

Nevertheless, the scene epsilon parameter is often not 

a remedy in the MC simulation. The physical accuracy 

required in neutronics compels the scene epsilon value 

to be considerably small, which is too microscopic to 

avoid self-intersections. 

For the MC simulation, most self-intersections occur 

after the following: a collision event nearby the surface, 

crossing the surface, and reflecting on the surface. The 

common ground of these cases is when neutrons are cast 

extremely close to the surfaces. These can make 

neutrons stuck on the surface and thereby the simulation 

does not proceed without any additional treatment. 

 

6. Any-Hit Approach to Avoid Self-Intersection 

 

In this regard, a simple and robust treatment is 

developed for efficient neutron transport. When a ray 

traverses over the entire scene geometry, all ray-

primitive intersection points along with the ray 

trajectory are considered as the potentially-closest 

intersection. The idea to resolve the self-intersection is 

to compare all potential hit-primitive indices to the hit-

primitive index of an antecedent ray tracing. If the one 

among those indices is the same as the previous hit-

primitive index, it means that the self-intersection 

occurs. Namely, the self-intersection can be surely 

prevented by “ignoring” duplicated intersection with 

that primitive. 

To achieve this, the Any-Hit program is adopted. A 

new conditional operation is augmented in the Any-Hit 

program such that it detects and ignores the duplicated 

intersection point. It can achieve an original closest 

intersection to be selected instead of the self-

intersection as illustrated in Fig. 3. 

 

Fig. 3. Resolving self-intersection by applying Any-Hit. 

 

This procedure does not take a further computational 

burden since the operation is performed within a single 

ray traversal process. Also, the overhead of applying the 

Any-Hit program to every potential intersection is 

negligible due to the optimized algorithms of the OptiX 

when constructing a ray tracing pipeline. 
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7. Results 

 

Adopted problems are the minicore designed by ANL 

and the one-sixth symmetrical MegaPower 3D core 

without control drums. Note that the vapor region of 

each heat pipe is replaced by a void pipe with reflective 

boundary in this work. The tracking method without the 

Any-Hit was adopted as a standard case to confirm the 

effect of the Any-Hit approach in a MC simulation.  

Fig. 4 illustrates the specifications and the mesh 

granularity of the minicore problem. The calculation 

conditions of PRAGMA employed for this simulation 

are shown in Table I. 

. 

 
Fig. 4. Specifications and mesh granularity of minicore. 

 
Table I: Calculation conditions for minicore. 

 

Fig. 5 illustrates the number of events per cycle for 

the minicore simulation and Table II summarizes 

calculation results of two cases. It is observed that a 

neutron event behavior of standard case shows much 

higher value and fluctuation compared to that of the 

Any-Hit case For a standard case, the average number 

of events appeared to be about 60 times larger than that 

of the Any-Hit case. The reason for this tendency is that 

neutrons stuck on the surfaces by self-intersections lead 

to an abnormal population tail effect. But, the Any-Hit 

approach can properly resolve this effect and thereby 

retain ordinary performance. 

Fig. 5. Neutron events at each cycle for minicore. 

 

Table II: Comparison of calculation results for minicore. 

 
The next problem was the 1/6 symmetrical MegaPower 

3D core illustrated in Fig. 6. This problem also has 

similar mesh granularity compared with the minicore 

problem with larger geometry size. The calculation 

conditions of PRAGMA are listed in Table III. 

 
Fig. 6. Specifications of MegaPower without control drums. 

 
Table III. Calculation conditions for MegaPower. 

 
Unfortunately, the simulation did not proceed for the 

standard case in this problem. As shown in Fig. 7, the 

number of alive neutrons decreased to some extent and 

then became saturated in the standard case. Some 

particles did not disappear even after several hundred 

thousand events. On the other hand, the number of alive 

neutrons rapidly diminished when adopted the Any-Hit 

approach, and the simulation successfully proceeded. 

 

Fig. 7. Number of alive neutrons at each event of a cycle for 

MegaPower. 

 

Scheme w/ Any-Hit w/o Any-Hit 

Multiplication factor 1.04684 (2) 1.04682 (2) 

Average Number of 

Events per Cycle 
9,546 572,847 

Number of Inactive Cycles 25 

Number of Active Cycles 100 

Number of Neutrons / Cycle 4,000,000 

Libraries (K) 900 / 1000 

Number of Inactive Cycles 50 

Number of Active Cycles 100 

Number of Neutrons / Cycle 4,000,000 

Libraries (K) 900 / 1000 / 1100 
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Through the trend of decreasing particles over events, 

it was expected that a non-negligible number of 

particles was trapped on the surface in the existing 

tracking algorithm such that they could have significant 

impacts on the accuracy of simulation results. 

Thus, the multiplication factors were compared to the 

reference solution to confirm the impact of the stuck 

particles on the simulations. The comparison was 

performed with the standard tracking algorithm with 

forced termination as 7,067 events per cycle and the 

tracking algorithm with the Any-Hit approach. Here, the 

maximum event limit was selected to the average 

number of events of the new scheme with the Any-Hit 

module. And the reference solution was obtained by the 

delta-tracking scheme which is relatively free from self-

intersections. 

Table IV presents calculation results of each tracking 

scheme. The reference solution obtained by the delta-

tracking scheme is 1.13063 (3). The multiplication 

factor calculated by the new tracking scheme with the 

Any-Hit approach is reasonable compared to the 

reference solution. However, the multiplication factor 

solved by the standard tracking scheme without the 

Any-Hit module was significantly lower than other 

results despite the same average number of events as the 

tracking scheme with the Any-Hit program. It confirms 

that the effect of stuck neutrons for a simulation cannot 

be ignored and the Any-Hit program is in harmony with 

MC simulations as resolving self-intersections. 

 

Table IV. Comparison of results for MegaPower. 

 

Also, it was expected that the additional operation to 

all potential intersections by the Any-Hit program 

increases the computational burden. However, the 

simulation performance increased with the Any-Hit 

program due to the reduced cumulative particle count 

despite the additional operation. 

 

8. Conclusions 

 

In this paper, a robust and straightforward algorithm 

was developed to resolve the self-intersection issues in 

MC simulations exploiting graphics ray tracing library. 

The Any-Hit program, which was originally used for 

graphics shadow computation, was successfully 

augmented to the existing OptiX pipeline in PRAGMA. 

By adopting the Any-Hit program, the duplicated hit-

primitive can be ignored by force while a ray traverse 

over all potential intersections. 

As the result, most self-intersections were resolved by 

the Any-Hit approach as retaining accuracy even in the 

case that induces severely high surface detection events. 

Moreover, it was confirmed that the accuracy was 

reasonably retained with reduced computational burden, 

unlike other additional manipulation. Now, it is planned 

to verify the unstructured geometry treatments of 

PRAGMA through various realistic problems. In 

addition, it should be verified whether the self-

intersections are totally resolved through verifications 

with various advanced reactor problems. 
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Scheme w/ Any-Hit w/o Any-Hit 

Multiplication 

factor 
1.13070 (3) 1.12538 (3) 

Average Number of 

Events per Cycle 
7,067 10,000 

Average Tracking 

Time of Cycle [s] 
29.63 29.70 


