
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 18-19, 2023

Resolution of Self-Intersection Issue in Monte Carlo Simulations Employing Graphics Ray Tracing Technology

Sung Joon Kwon, Jaeuk Im, Han Gyu Joo*

*Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

In recent days, various advanced reactors have gained

increasing interest due to several strengths such as

inherent safety and sustainability. The representative

advanced rectors are heat pipe cooled micro reactors

such as MegaPower [1] and pebble-bed reactors such as

HTR-PM [2]. These reactors have irregular geometric

structures which are significantly different from the

lattice-based structures of typical LWRs.

PRAGMA is a GPU-based continuous-energy MC

code being developed at Seoul National University,

which has a tailor-made rectilinear geometry model and

its optimized features for typical PWR applications [3].

For extensibility of the scope of applications from

PWRs to advanced reactors, PRAGMA exploits the

hardware-accelerated NVIDIA ray tracing engine OptiX

[4] rather than the constructive solid geometry (CSG)

based module for efficient neutron tracking on GPUs.

With the extension of geometry modeling, PRAGMA

retains the general applicability by employing primitive-

based geometry [5] and triangle-based unstructured

mesh geometry [6] aided with OptiX.

However, there is still an obstacle, known as the self-

intersection issue, to applying the graphics ray tracing

library to physical simulations without any treatments.

This issue is a well-known and notorious problem in

graphics ray tracing due to round-off errors in the

floating-point arithmetic. In the MC simulation, it can

cause a neutron to be stuck on a surface, and it triggers

performance degradation since additional manipulations

are required to make the neutron deviate from the

surface.

This paper presents a simple and robust ray casting

algorithm to avoid self-intersection by adopting an Any-

Hit module of OptiX. The irregular geometry treatment

in PRAGMA is described briefly. A ray tracing pipeline

and a traversal process are introduced and solutions for

preventing self-intersection issues are demonstrated on

unstructured triangle-based mesh geometry with fine

granularity.

2. Unstructured Geometry Treatment in PRAGMA

An irregular geometry is represented based on a CAD

mesh-based geometry model in PRAGMA. A nuclear

reactor structure is modeled using only four types of

basic mesh cells such as tetrahedron, hexahedron,

wedge and pyramid cells. For an efficient modeling of a

curve with meshes, a volume correction method was

employed to preserve calculation accuracy using a few

mesh.

The OptiX ray tracing API was adopted in PRAGMA

to calculate a distance to the nearest surface for a

neutron during a MC simulation. The OptiX is a

CUDA-centric ray tracing API optimized for NVIDIA

GPUs, which is employed in graphics or even physical

simulations. For a mesh-based geometry treatment in

MC simulation, the distance calculations are significant

burdens since each region is divided into several mesh

cells. The distance calculation performance can increase

significantly by adopting the CUDA-based ray tracing

API OptiX.

3. OptiX Ray Tracing Pipeline

The OptiX ray tracing API provides a simple and

flexible programmable pipeline for ray tracing. The

OptiX provides a program that is a block of executable

code on the GPU and represents a particular shading

operation. The ray tracing pipeline in OptiX mainly

consists of a ray generation, an intersection program,

shading, and a miss program. A virtual ray invoked

from the ray generation program traverses scene

geometry in the pipeline and finds the intersections with

primitives as described in Fig. 1.

Fig. 1 Diagram of OptiX ray tracing pipeline.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 18-19, 2023

When a ray is generated from a point, potential

intersections are determined based on bounding boxes

of primitives as illustrated in Fig. 2. Selecting potential

intersections in the traversal process is fixed-function

and hardware-accelerated operations which cannot be

controlled by a developer.

Fig. 2. Diagram of selecting potential intersections.

For all potential surfaces, an intersection and Any-Hit

program are invoked during traversal. The intersection

program takes a ray-primitive intersection examination

and calculates a distance to the surface from the point. It

is a user-provided program and can be implemented for

all mathematically expressible primitives.

The Any-Hit program is called when a traced ray

finds a potentially-closest intersection point for graphics

shadow computation. However, in the MC application,

this program is generally redundant since only the

distance to the nearest surface from the point is utilized

in the simulation process.

Based on the distance calculated by the intersection

program, the closest surface is determined among the

potential intersections. If the ray does not hit any

surface along the ray trajectory, a miss program is

invoked.

4. Self-Intersection Issue in Ray Tracing

In the OptiX ray tracing library, rays are represented

as parametric lines. This representation calculates the

endpoint of the ray using ray origin, direction, and the

parameter that indicates distance. For the ray tracing

simulation, it forms a ray path by starting at the light

source and intersecting the ray with the scene geometry.

As the surface is hit, a new ray is generated on that

surface to continue the tracing.

Theoretically, this new ray should not detect the

intersection with the same surface again since the zero-

distance is excluded in parametric representations.

However, due to errors in the floating-point arithmetic,

the new ray may intersect a given point repeatedly with

an infinitesimally small distance parameter. This

phenomenon is called a self-intersection.

To prevent a self-intersection caused by the floating-

point representation, a threshold parameter called scene

epsilon is utilized in the ray tracing library. It neglects

all intersections with distance parameters smaller than a

preset value, which is defined to be small enough to

discover actual intersections.

5. Self-Intersection Issue in MC Simulation

Nevertheless, the scene epsilon parameter is often not

a remedy in the MC simulation. The physical accuracy

required in neutronics compels the scene epsilon value

to be considerably small, which is too microscopic to

avoid self-intersections.

For the MC simulation, most self-intersections occur

after the following: a collision event nearby the surface,

crossing the surface, and reflecting on the surface. The

common ground of these cases is when neutrons are cast

extremely close to the surfaces. These can make

neutrons stuck on the surface and thereby the simulation

does not proceed without any additional treatment.

6. Any-Hit Approach to Avoid Self-Intersection

In this regard, a simple and robust treatment is

developed for efficient neutron transport. When a ray

traverses over the entire scene geometry, all ray-

primitive intersection points along with the ray

trajectory are considered as the potentially-closest

intersection. The idea to resolve the self-intersection is

to compare all potential hit-primitive indices to the hit-

primitive index of an antecedent ray tracing. If the one

among those indices is the same as the previous hit-

primitive index, it means that the self-intersection

occurs. Namely, the self-intersection can be surely

prevented by “ignoring” duplicated intersection with

that primitive.

To achieve this, the Any-Hit program is adopted. A

new conditional operation is augmented in the Any-Hit

program such that it detects and ignores the duplicated

intersection point. It can achieve an original closest

intersection to be selected instead of the self-

intersection as illustrated in Fig. 3.

Fig. 3. Resolving self-intersection by applying Any-Hit.

This procedure does not take a further computational

burden since the operation is performed within a single

ray traversal process. Also, the overhead of applying the

Any-Hit program to every potential intersection is

negligible due to the optimized algorithms of the OptiX

when constructing a ray tracing pipeline.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 18-19, 2023

7. Results

Adopted problems are the minicore designed by ANL

and the one-sixth symmetrical MegaPower 3D core

without control drums. Note that the vapor region of

each heat pipe is replaced by a void pipe with reflective

boundary in this work. The tracking method without the

Any-Hit was adopted as a standard case to confirm the

effect of the Any-Hit approach in a MC simulation.

Fig. 4 illustrates the specifications and the mesh

granularity of the minicore problem. The calculation

conditions of PRAGMA employed for this simulation

are shown in Table I.

.

Fig. 4. Specifications and mesh granularity of minicore.

Table I: Calculation conditions for minicore.

Fig. 5 illustrates the number of events per cycle for

the minicore simulation and Table II summarizes

calculation results of two cases. It is observed that a

neutron event behavior of standard case shows much

higher value and fluctuation compared to that of the

Any-Hit case For a standard case, the average number

of events appeared to be about 60 times larger than that

of the Any-Hit case. The reason for this tendency is that

neutrons stuck on the surfaces by self-intersections lead

to an abnormal population tail effect. But, the Any-Hit

approach can properly resolve this effect and thereby

retain ordinary performance.

Fig. 5. Neutron events at each cycle for minicore.

Table II: Comparison of calculation results for minicore.

The next problem was the 1/6 symmetrical MegaPower

3D core illustrated in Fig. 6. This problem also has

similar mesh granularity compared with the minicore

problem with larger geometry size. The calculation

conditions of PRAGMA are listed in Table III.

Fig. 6. Specifications of MegaPower without control drums.

Table III. Calculation conditions for MegaPower.

Unfortunately, the simulation did not proceed for the

standard case in this problem. As shown in Fig. 7, the

number of alive neutrons decreased to some extent and

then became saturated in the standard case. Some

particles did not disappear even after several hundred

thousand events. On the other hand, the number of alive

neutrons rapidly diminished when adopted the Any-Hit

approach, and the simulation successfully proceeded.

Fig. 7. Number of alive neutrons at each event of a cycle for

MegaPower.

Scheme w/ Any-Hit w/o Any-Hit

Multiplication factor 1.04684 (2) 1.04682 (2)

Average Number of

Events per Cycle
9,546 572,847

Number of Inactive Cycles 25

Number of Active Cycles 100

Number of Neutrons / Cycle 4,000,000

Libraries (K) 900 / 1000

Number of Inactive Cycles 50

Number of Active Cycles 100

Number of Neutrons / Cycle 4,000,000

Libraries (K) 900 / 1000 / 1100

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 18-19, 2023

Through the trend of decreasing particles over events,

it was expected that a non-negligible number of

particles was trapped on the surface in the existing

tracking algorithm such that they could have significant

impacts on the accuracy of simulation results.

Thus, the multiplication factors were compared to the

reference solution to confirm the impact of the stuck

particles on the simulations. The comparison was

performed with the standard tracking algorithm with

forced termination as 7,067 events per cycle and the

tracking algorithm with the Any-Hit approach. Here, the

maximum event limit was selected to the average

number of events of the new scheme with the Any-Hit

module. And the reference solution was obtained by the

delta-tracking scheme which is relatively free from self-

intersections.

Table IV presents calculation results of each tracking

scheme. The reference solution obtained by the delta-

tracking scheme is 1.13063 (3). The multiplication

factor calculated by the new tracking scheme with the

Any-Hit approach is reasonable compared to the

reference solution. However, the multiplication factor

solved by the standard tracking scheme without the

Any-Hit module was significantly lower than other

results despite the same average number of events as the

tracking scheme with the Any-Hit program. It confirms

that the effect of stuck neutrons for a simulation cannot

be ignored and the Any-Hit program is in harmony with

MC simulations as resolving self-intersections.

Table IV. Comparison of results for MegaPower.

Also, it was expected that the additional operation to

all potential intersections by the Any-Hit program

increases the computational burden. However, the

simulation performance increased with the Any-Hit

program due to the reduced cumulative particle count

despite the additional operation.

8. Conclusions

In this paper, a robust and straightforward algorithm

was developed to resolve the self-intersection issues in

MC simulations exploiting graphics ray tracing library.

The Any-Hit program, which was originally used for

graphics shadow computation, was successfully

augmented to the existing OptiX pipeline in PRAGMA.

By adopting the Any-Hit program, the duplicated hit-

primitive can be ignored by force while a ray traverse

over all potential intersections.

As the result, most self-intersections were resolved by

the Any-Hit approach as retaining accuracy even in the

case that induces severely high surface detection events.

Moreover, it was confirmed that the accuracy was

reasonably retained with reduced computational burden,

unlike other additional manipulation. Now, it is planned

to verify the unstructured geometry treatments of

PRAGMA through various realistic problems. In

addition, it should be verified whether the self-

intersections are totally resolved through verifications

with various advanced reactor problems.

ACKNOWLEDGEMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. 2021M2D6A1048220).

REFERENCES

[1] P. R. Mcclure, D. I. Poston, V. R. Dasari, R. S. Reid,

“Design of Megawatt Power Level Heat Pipe Reactors, Los

Alamos, New Mexico,” USA, LA-UR-15-8840, 2015.

[2] Z. Zhang et al., The Shandong Shidao Bay 200 MWe

High Temperature Gas-Cooled Reactor Pebble-Bed Module

(HTR-PM) Demonstration Power Plant: An Engineering and

Technological Innovation, Engineering, Vol.2, p. 112, 2016.

[3] N. Choi, K. M. Kim, H. G. Joo, “Initial Development of

PRAGMA – A GPU-Based Continuous Energy Monte Carlo

Code for Practical Applications,” Korean Nuclear Society

Autumn Meeting, Goyang, Korea, Oct.24-25, 2019.

[4] S. G. Parker et al., “OptiX: A General Purpose Ray

Tracing Engine,” ACM Transactions on Graphics, Vol.29(4),

pp.1-13, 2010.

[5] J. Im et al., “Flexible Geometry Treatment in PRAGMA

Using NVIDIA® Ray Tracing Engine OptiX™,” Transactions

of the Korean Nuclear Society Virtual Spring Meeting, Jul.9-

10, 2020.

[6] J. Im et al., “Multiphysics Analysis System for Heat Pipe

Cooled Micro Reactors Emplying PRAGMA-OpenFOAM-

ANLHTP,” Proceedings of International Conference on

Physics of Reactors, Pittsburgh, PA, United States, May.15-

20, 2022.

Scheme w/ Any-Hit w/o Any-Hit

Multiplication

factor
1.13070 (3) 1.12538 (3)

Average Number of

Events per Cycle
7,067 10,000

Average Tracking

Time of Cycle [s]
29.63 29.70

