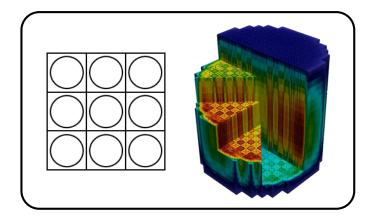

KNS Spring Meeting 2023

Room 202A, International Convention Center Jeju

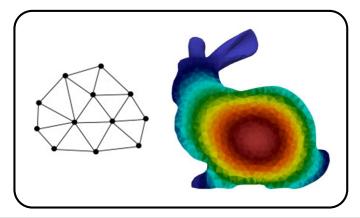
Resolution of Self-Intersection Issue in Monte Carlo Simulations Employing Graphics Ray Tracing Technology

Sung Joon Kwon, Jaeuk Im, Han Gyu Joo Department of Nuclear Engineering Seoul National University May 18th, 2023

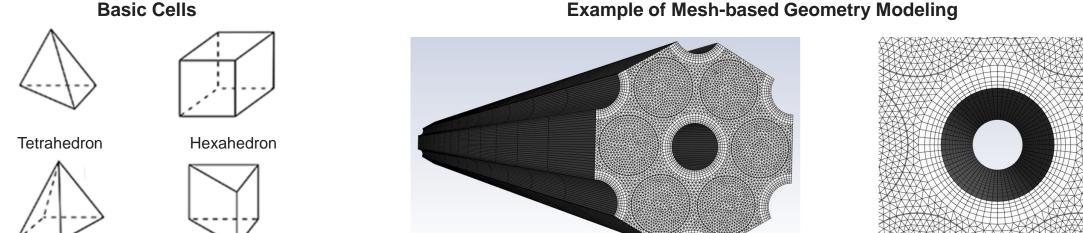


- Power Reactor Analysis using GPU-based Monte Carlo Algorithm (PRAGMA)
 - Funded by KHNP through K-CLOUD project.

PRAGMA



PWR Lattice Geometry

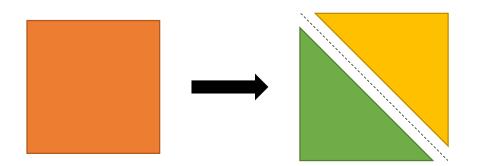

- Language: CUDA C++
- Objectives of the PRAGMA code
 - Apply dedicated optimizations for PWR analysis.
 - Enable efficient simulation in feasible time scale on small cluster equipped with consumer-grade GPUs.
 - Supports general unstructured mesh geometry treatment powered by graphics ray tracing technology.

Unstructured Mesh Geometry

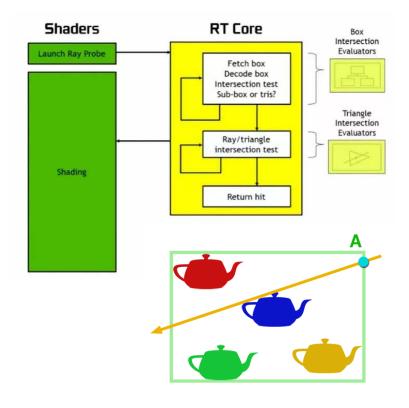
- **Unstructured Mesh Geometry Representation in PRAGMA**
 - An irregular geometry is represented based on CAD mesh-based geometry model in PRAGMA.
 - A structure is modeled using only four types of basic mesh cells.
 - PRAGMA reconstructs an unstructured geometry based on a mesh file generated by ANSYS or Cubit.
 - For efficient modeling of a curve with meshes, a volume correction method was employed to preserve calculation accuracy using a few meshes.

Example of Mesh-based Geometry Modeling

Wedge

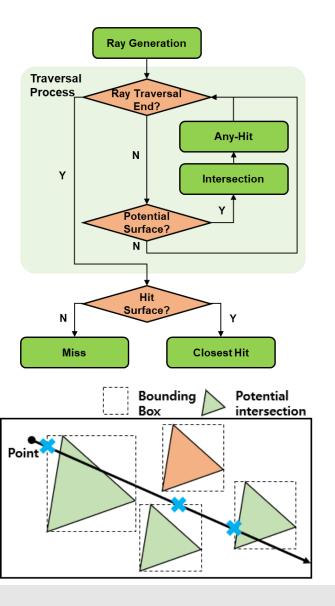

Pyramid

Seoul National University Reactor Physics Laboratory

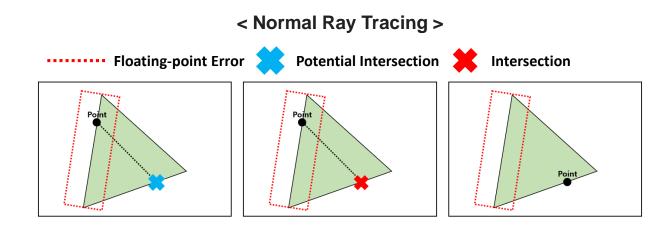


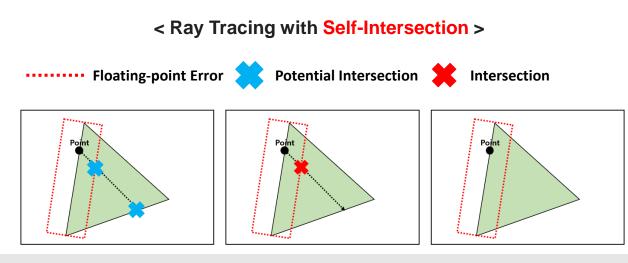
Application of OptiX Ray Tracing in Mesh-based Geometry

- PRAGMA adopts OptiX for neutron tracking in a mesh-based geometry.
 - OptiX is a CUDA-based ray tracing API optimized for NVIDIA GPUs.
- It provides a programmable ray tracing pipeline allowing a user to create a custom ray tracing kernel.
 - Bounding Volume Hierarchy (BVH) traversal is automated by the library, while other programs are user-supplied.
- For triangles, an optimized built-in ray tracing algorithm is provided.
 - The built-in program leverages the hardware acceleration of NVIDIA GPUs (RT cores).
 - Quadrilaterals are split into triangles to exploit the optimized built-in capabilities of the ray tracing engine.



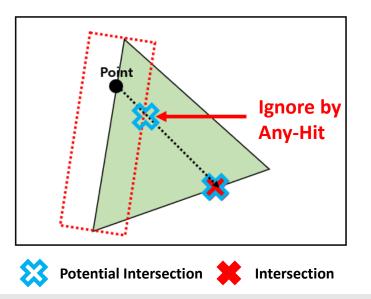
OptiX Ray Tracing Pipeline


- The ray tracing pipeline mainly consists of a ray generation, an intersection program, shading, and a miss program.
 - A virtual ray invoked from the ray generation program traverses scene geometry in the pipeline and finds the intersections with primitives.
- When a ray is cast from a point, potential intersections are determined based on bounding boxes of primitives.
- For all potential surfaces, an intersection and Any-Hit program are invoked during traversal.
 - The Any-Hit program is called when a traced ray finds a potentially-closest intersection point for graphics shadow computation.
 - However, in the MC application, the Any-Hit program is generally redundant since only the distance to the nearest surface from the point is utilized in the simulation process.
- Based on the distance calculated by the intersection program, the closest surface is determined among the potential intersections.



Self-Intersection Issue in MC simulation

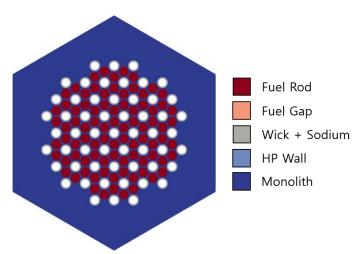
- A self-intersection is a phenomenon that the intersection of the same surface is repeatedly detected for a new ray due to floating-point arithmetic.
 - Ray tracing cannot proceed when a selfintersection occurs.
 - In graphics, most self-intersections can be resolved by utilizing a threshold parameter to neglect all intersections with distance parameters smaller than the value.
- In an MC simulation, a neutron is trapped on a certain surface when a self-intersection occurs.
 - It may degrade the performance and accuracy of an MC simulation.
 - Adopting a threshold parameter cannot be a remedy in an MC simulation since the required accuracy in the neutronics is too microscopic.



Existing Solutions to Prevent Self-Intersections

- A threshold parameter called scene epsilon neglects intersections with a distance smaller than a preset value.
 - In an MC simulation, the required physical accuracy may decrease by adopting the scene epsilon parameter.
- Another solution is applying new dynamic epsilon called track epsilon forced to deviate neutron from the surface.
 - However, this solution must require an additional ray traversal process increasing computing time.

- Solution to Prevent Self-Intersections Adopting Any-Hit Approach
 - The idea is to ignore self-intersections using the Any-Hit program during traversal.
 - The Any-Hit program can interfere during the traversal process and explicitly ignore several cases of self-intersections.
 - It is expected that the self-intersections can be eliminated preserving the physical accuracy by adopting the Any-Hit approach.
 - It should be verified how much the performance decreases by additional calculations during traversal.



Problem Descriptions


< Configuration of Minicore >

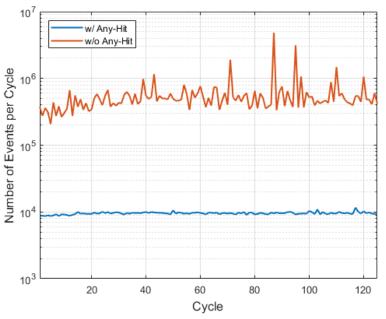
Problem Descriptions

- The Minicore designed by ANL and the one-sixth symmetrical MegaPower 3D core was adopted in this research.
 - The control drums in MegaPower core were not modeled.
 - The vapor region of each heat pipe is replaced by a void pipe with a reflective boundary.
- The tracking method without the Any-Hit was adopted as a standard case to confirm the effect of self-intersections.

< Configuration of MegaPower >

Problem	Minicore	MegaPower	
# of Cells	904,200	1,897,530	
# of Inactive Cycles	25	50	
# of Active Cycles	100		
# of Neutrons / Cycle	4,000,000		
Libraries	ENDF/B-VII (900K / 1000K)	ENDF/B-VII (900K / 1000K / 1100K)	

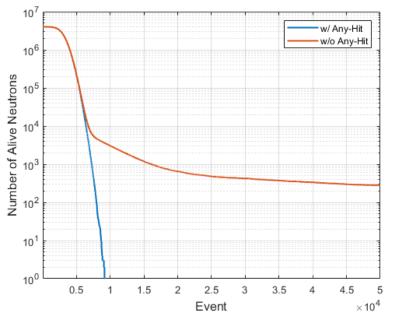
May 18, 2023


Seoul National University Reactor Physics Laboratory

Calculation Results of Minicore Problem

- It is observed that a neutron event behavior of the standard case shows much higher value and fluctuation.
 - For a standard case, the average number of events appeared to be about 60 times larger than that of the Any-Hit case.
 - Some neutrons stuck on the surfaces by self-intersections lead to an abnormal population tail effect.
- It was confirmed that the abnormal population tail effect is resolved by adopting the Any-Hit approach.

< Number of Events at Each Cycle >

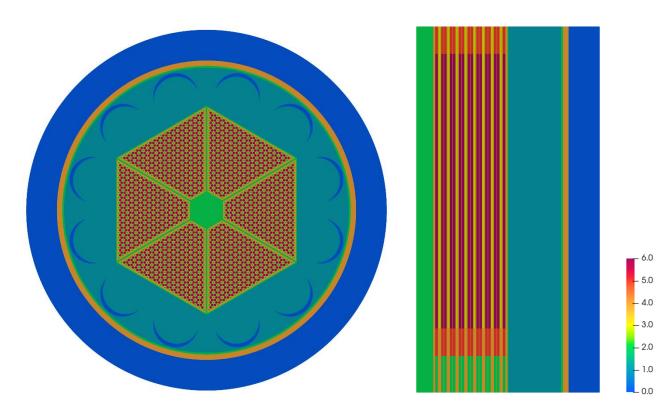


Scheme	w/ Any-Hit	w/o Any-Hit
Multiplication Factor	1.04684(2)	1.04682 (2)
Average Number of Events per Cycle	9,546	572,847

Calculation Results of MegaPower Problem

- The simulation without the Any-Hit program did not proceed due to alive neutrons.
 - Some particles are stuck on surfaces by self-intersections such that they did not disappear even after several hundred thousand events.
 - The number of alive neutrons rapidly diminished when adopted the Any-Hit program.
- It was confirmed that a non-negligible number of particles was trapped on the surface without the Any-Hit approach.
 - The multiplication factor changes significantly when the alive neutrons are ignored.

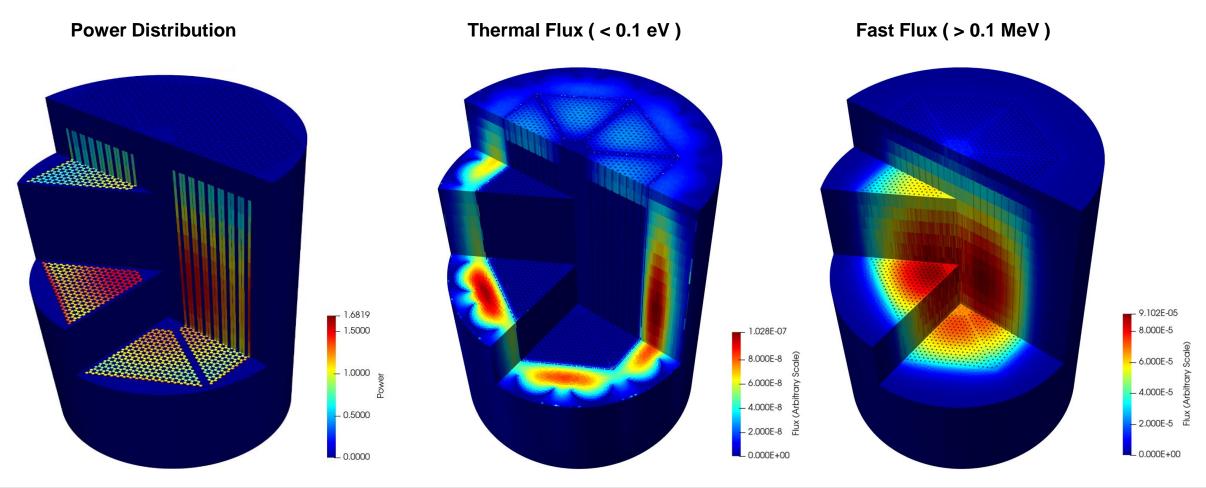
< Number of Alive Neutrons at Each Event >



Scheme	w/ Any-Hit	w/o Any-Hit
Multiplication Factor	1.13070 (3)	1.12538 (3)
Average Number of Events per Cycle	7,067	10,000
Average Tracking Time of Cycle [s]	29.63	29.70

MegaPower 3D Full Core Problem

Problem configuration (Material-wise)



Calculation conditions

Parameter	Value	
Problem	LANL MegaPower 3D Full Core	
# of GPUs	24 (NVIDIA RTX A5000)	
# of Particles	200,000,000 (Total 11.5 Billion)	
# of Cycles	25 (Inactive) / 50 (Active)	
Ramp-up	On (Mode: Exponential, Factor: 20)	
Core Power	5 MW _{th}	
Feedback	Off	
Delta Tracking	On (zone-wise)	
Grid Hashing	On (Hash size: 50)	
Libraries (K)	900 / 1000 / 1100	
# of Cells	24,054,408	
# of Traingles	133,594,200	

- Calculation Results
 - The total computing time: 35 minutes

Seoul National University Reactor Physics Laboratory

- Conclusion
 - The self-intersections in a MC simulation were resolved by using the Any-Hit approach.
 - Any-Hit program, which was originally used for graphics shadow computation, was successfully augmented to the existing OptiX pipeline in PRAGMA.
 - It was confirmed that the self-intersections are resolved without degrading the performance, unlike other additional manipulation.
 - It was demonstrated that the MegaPower 3D full core can be performed efficiently by PRAGMA.

Ongoing Works

- The unstructured geometry treatments of PRAGMA are being verified through various realistic problems.
 - It should be verified whether the self-intersections are resolved totally through verifications with various problems.
- Some multiphysics analysis systems based on PRAGMA are being developed for an accurate advanced nuclear reactor simulation.
 - Neutronics thermo-mechanical heat-pipe coupled multiphysics analysis system for the heat-pipe analysis was already established.