Anaylsis of ⁹⁹Tc in radioactive waste by ICP-MS

Jung-Weon Choi¹, Kwangsoon Choi, Gi Yong Kim, Jihyun Kim, Jung Bo Yoo^{*} Radioactive Waste Chemical Analysis Center, Korea Atomic Energy Research Institute (KAERI) jwchoi92@kaeri.re.kr

1. Introduction

⁹⁹Tc is one of 14 essential nuclides whose concentrations must be identified in radioactive waste nuclide analysis. ⁹⁹Tc is a long-lived nuclide $(t_{1/2}=211,000 \text{ y})$ and emits beta ray, and the radioactive concentration is currently being investigated by measurement using GPC [1].

GPC is an analysis device that measures alpha or beta rays, and a process of separating ⁹⁹Tc is required to analyze only ⁹⁹Tc. However, there is a disadvantage in that accuracy is low because other beta nuclides in addition to ⁹⁹Tc are also measured if accurate separation is not performed [2].

In addition, in order to separate ⁹⁹Tc from the pretreatment liquid generated after waste pretreatment, the recovery rate of ⁹⁹Tc must be confirmed by adding a carrier and performing a precipitation process using TPAC (tetraphenyl arsonium chloride) [3]. At this time, there is a possibility of weight loss in the recovery process, and a lot of time is required as precipitation and drying processes are required after separation.

Therefore, in this study, we investigated whether ⁹⁹Tc could be analyzed and quantified using ICP-MS, which is effective for analyzing long-lived nuclides [4]. In addition, the effect of various interfering nuclides was also evaluated through ICP-MS analysis.

2. Experimental & Method

2.1. Material and chemical reagents

All chemicals used in the experiment were of analytical grade and prepared using deionized water (18.2 M Ω ·cm). Re carrier (10 ppm) was used from AccuStandard. ⁹⁹Tc (377 Bq/mL) was used as CRM, and was used according to the concentration range available for analysis.

For seperation of 99 Tc, 65 wt.% Nitrate Acid (HNO₃), 48 wt.% Hydrofluoric acid(HF), 85% Phosphoric acid(H₃PO₄) and 99 wt.% Ammonium chloride(NH₄Cl) were used from Sigma Aldrich.

Each product was used after volume dilution with deionized water according to the concentration required for separation. AG MP-1M Anion Exchange Resin (100-200 mesh size, chloride from) were used as separation resin of ⁹⁹Tc.

In the case of separating actual radioactive waste, the carriers used were Sr, Fe, Nb, Ni, Ca at a concentration of 10 mg/mL purchased from AccuSatndard, respectively.

In addition, the elements composed of the simulated radioactive waste sample solution are 18 elements excluding carriers, and are shown in Table 1 below.

Table 1. The elements composed of the simulated radioactive waste sample solution containing carrier solution.

Element	Chemical Reagent	Element	Chemical Reagent
Al	Al(NO ₃) ₃ •9H ₂ O	Sb	
Ca	CaCO ₃	Ba	
Cr	Cr(NO ₃) ₃ •9H ₂ O	Sn	
Cu	$CuCl_2 \bullet 2H_2O$	Ti	
K	KC1	Мо	
Li	LiCl	Zr	Standard solution
Mg	Mg(NO ₃) ₂ •6H ₂ O	Re	
Na	NaNO ₃	Sr	
Zn	ZnCl ₂	Fe	
Co		Nb	
Mn	Standard solution	Ni	
Pb	ſ	-	-

2.2. Separation of ⁹⁹Tc

2.2.1. Optimization of Re carrier

Re is used as a carrier for ⁹⁹Tc separation of anion exchange resin, and the experiment is conducted by adding 7.5 mg according to the current guideline.

In order to simultaneously analyze ⁹⁹Tc and Re by ICP-MS, ⁹⁹Tc and Re must coexist within the analyzable concentration range. Currently, since the amount of Re used for separation is greater than ⁹⁹Tc, it is inconvenient to analyze, respectively. Also, it can contribute to waste reduction by reducing the amount of Re.

Therefore, an experiment was conducted to optimize the minimum amount of Re required for ⁹⁹Tc separation by adjusting the amount of Re.

First, add 0.1 mL of ⁹⁹Tc (377 Bq/mL) and 0.25~20 ppb of Re, and add 0.5 M HNO₃ to make-up 8 mL.

Second, Sr, Fe, Nb, Ni, and Ca carriers are added to the prepared solution according to the maximum carrier addition amount for each nuclide to make a simulated solution.

In the final simulated solution, 99 Tc and Re are separated by passing solutions of 0.5 M HNO₃, 14% NH₄Cl-4% HF and 0.1 M HNO₃ through an anion exchange resin separation tube according to the separation process. ^{99}Tc eluate was eluted using 5 mL of 10 M HNO_3.

2.2.2. Effect of multi-elements

In the radioactive waste nuclide analysis, there is a simulated radioactive waste solution with interfering nuclides used to check the resolution in the presence of various elements.

Since Mo with m/z=98 and 100 also exists in the dissolved solution, an interfering effect experiment was conducted to confirm the removal of Mo during separation and to confirm the quantitative analysis of ⁹⁹Tc during ICP-MS analysis.

By adding the optimum amount of Re carrier, 0.1 mL of ⁹⁹Tc solution, and each carrier solution (except for 0.5 M HNO₃) derived from the experiment in 2.2.1 to the solution containing each element, a simulated solution for interfering nuclide effects is prepared. The separation process was performed as in 2.2.1.

2.3. Analysis of ⁹⁹Tc and Re by ICP-MS

The ICP-MS was purchased from Thermo Fisher Scientific (iCAPTM 7000 series RQ ICP-MS).

For ICP-MS analysis, all eluates were prepared by diluting 20 times with 0.1 M HNO₃.

Analysis was performed after stabilization and calibration according to the Tutorial, and was analyzed in Standard(STD) mode and Kinetic Energy Discrimination(KED) mode to remove interference.

3. Results & Discussion

3.1. Optimization of Re carrier

After performing the ⁹⁹Tc separation experiment while varying the Re concentration from 0.25 to 20 ppb, the results of analyzing the concentrations of ⁹⁹Tc and Re in STD and KED mode by diluting 20 times are shown in Table 2.

Table 2. ICP-MS results of ⁹⁹Tc and Re in optimization of Re carrier experiment.

⁹⁹ Tc (ppb)	Re (ppb)	STD		KED	
	(ppo) —	Tc (ppb)	Re (ppb)	Tc (ppb)	Re (ppb)
0.5953	0.25	0.084	0.355	0.082	0.368
	0.5	0.172	0.605	0.173	0.627
	1	0.182	1.156	0.185	1.166
	2	0.216	1.871	0.213	1.922
	5	0.577	5.489	0.596	5.479
	10	0.601	10.351	0.617	10.295
	15	0.626	15.865	0.634	15.595
	20	0.642	21.510	0.642	21.242

The Re concentration was over-estimated from 0.25 to 5 ppb except for 2 ppb, and it was confirmed that ⁹⁹Tc was not completely captured in the resin, so that a smaller amount than the amount added was eluted.

In the case of 10 to 20 ppb Re, it was slightly overestimated compared to the amount of both Re and ⁹⁹Tc, but when the recovery rate was calculated by correcting the analysis value compared to the amount of ⁹⁹Tc-Re, as shown in Table 3 When Re 10 ppb, the most optimal amount could be derived.

Table 3. ⁹⁹Tc-Re recovery rate (%) in effect of optimization of Re carrier experiment (⁹⁹Tc 0.5953 ppb).

Re		STD			KED	
(ppb)	99Tc	Re	99Tc-Re	99Tc	Re	99Tc-Re
5	96.93	109.78	88.29	100.12	109.58	91.36
10	100.96	103.51	97.53	103.65	102.95	100.68
15	105.16	105.77	99.42	106.50	103.97	102.44
20	108.07	107.55	100.43	107.84	106.21	101.54

When 10 ppb Re was used in the KED mode than in the STD mode, the recovery rate was 100.68%, which was a better fit.

3.2. Effect of multi-elements

After conducting a ⁹⁹Tc separation experiment in a simulated solution in which 18 multi-elements and 5 carriers coexist, the results of analyzing the concentrations of ⁹⁹Tc and Re by KED mode by diluting them 20 times are shown in Table 4.

Table 4. ICP-MS (KED mode) results of ⁹⁹Tc and Re in effect of multi-elements experiment.

Sample	⁹⁹ Tc (ppb)	Re (ppb)	KED	
	(ppo)	(ppo)	⁹⁹ Tc (ppb)	Re (ppb)
1	0.5953	10	0.71	12.01
2		10	0.65	11.09
3		10	0.68	11.63

It was confirmed through triplet experiments, and when the recovery rate was corrected, a value close to 100% was derived as an average 99.24% (Table 5).

Therefore, when using Re 10 ppb, it was confirmed that 99 Tc was well separated despite the presence of various elements, and it was confirmed that Tc with m/z=99 could be quantitatively analyzed with high resolution of ICP-MS.

Table 5. ⁹⁹Tc-Re recovery rate (%) in effect of multielements experiment.

Sample	KED			
	⁹⁹ Tc	Re	⁹⁹ Tc-Re	

I	119.60	120.05	99.63
2	108.68	110.92	99.96
3	114.06	116.25	98.12

4. Conclusion

In this study, it was confirmed through various experiments whether it is possible to analysis ⁹⁹Tc in radioactive waste by using ICP-MS.

At this time, the amount of Re is significantly reduced compared to the existing separation method, which is economical by reducing sample usage and waste generation.

Despite the influence of various nuclides present in radioactive waste, it was found that ⁹⁹Tc was well separated and quantified with excellent resolution in the KED mode of ICP-MS.

REFERENCES

[1] K. Shi, X. Hou, R. Roos, W. Wu, Determination of technetium-99 in environmental samples: A review, Analytica Chimica Acta, vol. 709, pp. 1– 20, 2012.

[2] S. F. Fang, and T. C. Chu, Study on determination of technetium-99 in environmental samples. In Proc. of International Congress of the International Radiation Protection Association, 2000.

[3] C. Xiao, A. Khayambashi, and S. Separation and Remediation of 99 TcO₄- from Aqueous Solutions, Chemistry of Materials, Vo. 31, pp.3863-3877. 2019.

[4] C. Lian-Song, W. Tsing-Hai. H. Yi-Kong, J. Li-Wei, C. Wie-Han, T. Tsuey-Lin, and W. Chu-Fang, Accurate technetium-99 determination using the combination of TEVA resin pretreatment and ICP-MS measurement and its influence on the Tc-99/Cs-137 scaling factor calculation. Journal of Radioanalytical Nuclear Chemistry, Vol 299, 1883-1889, 2014.