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1. Introduction 

 
Monte Carlo neutron transport analysis is a highly 

accurate solution for nuclear reactor analysis. The 
method simulates the neutron transport and tally reactor-
related quantities. However, a high-fidelity Monte Carlo 
solution requires numerous particle simulations, 
resulting in an enormous computing burden. Researchers 
have sought the Monte Carlo acceleration schemes. 
Combination with the deterministic methods is one of the 
acceleration methods suggested. 

Improved Deterministic Truncation of Monte Carlo 
(iDTMC) method is a strategic combination of the 
deterministic and Monte Carlo solutions developed in 
KAIST [1-4]. The iDTMC method previously showed its 
advantage in acceleration and variance reduction. 
Furthermore, the method was modified to apply to the 
reactor depletion analysis, which showed good 
agreement with the standard Monte Carlo solutions [3].  

In the Monte Carlo simulation, fission neutrons from 
the previous cycle are utilized for the next cycle 
initialization. The scheme leads to inevitable intercycle 
correlation. In the iDTMC method, the issue becomes 
more severe since the method utilizes FMFD parameters 
accumulated from previous cycles. The underestimation 
induces significant underestimation in apparent variance 
compared to the real. Correlated sampling was proposed 
and implemented to estimate the real variance of the 
iDTMC solution. In this paper, further improvement of 
the correlated sampling with an iterative approach is 
studied. 

 
2. Methods 

 
2.1 iDTMC method 
 
iDTMC method is an acceleration and variance 

reduction scheme for the Monte Carlo solution. The 
Monte Carlo solution can provide high-fidelity solutions, 
while the deterministic solution is fast. The iDTMC 
method combines two methods to obtain a high-fidelity 
solution with faster computation. The procedure 
comprises inactive cycles with coupled p-CMFD and 
active cycles with decoupled p-FMFD solutions. 

During the early few steps, no further calculations are 
performed due to the lack of convergence of FSD 
(Fission Source Distribution). Then, until the inactive 
cycle ends, the convergence of the FSD is accelerated 
with the p-CMFD method. [5] Based on the Monte Carlo 
tallies, such as neutron currents, a coarse-mesh-based 
deterministic solution is obtained by solving an 
eigenvalue problem. The solution is utilized in the next 

cycle of the Monte Carlo transport by adjusting the 
weight of the fission neutrons. 

The p-FMFD method is solved in active cycles to 
obtain the multiplication factor and power distribution. 
The solution is provided with an average of p-FMFD 
parameters accumulated from the middle of the inactive 
cycles. The scheme leads to a higher precision of the 
iDTMC solution. 

Previous studies showed that the iDTMC method 
could provide a highly accurate and precise solution even 
on the first active cycle. Since the standard Monte Carlo 
solution require sufficient active cycles for the precise 
solution, the iDTMC solution can significantly reduce 
the computing burden. Also, inactive cycles can be 
shorter than the standard Monte Carlo for the sake of the 
p-CMFD. Fig. 1 shows the iDTMC solution scheme.  

 

Fig 1. iDTMC scheme 
 
2.2 Real variance estimation 
 
Despite the advantage of the iDTMC method, the 

iDTMC method underestimates the variance of the 
solution. The issue arises from the strong inter-cycle 
correlation. In the current iDTMC method, FMFD 
parameters are accumulated from the previous inactive 
cycles. Therefore, the inter-cycle correlations are 
stronger in the iDTMC than in the standard Monte Carlo. 
The correlation results in severe underestimation of 
apparent variance compared to the real value from the 
multiple independent calculations. 

Correlated sampling is adopted to produce the 
multivariate samples of FMFD parameters with proper 
consideration of correlation [1, 4]. The samples are used 
to evaluate variances of reactivity and power distribution. 
For each fine mesh, one-group FMFD parameters are 
perturbed with correlated sampling. Eq. (1) denotes the 
correlation matrix for each mesh. 
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� (1) 

 
where 𝐶𝐶(𝑋𝑋,𝑌𝑌)  denotes the correlation coefficient 
between quantities X and Y. Σ𝑡𝑡, Σ𝑎𝑎, 𝜈𝜈Σ𝑓𝑓 stands for one-
group total, absorption, and nu-fission cross-section 
defined for each mesh, respectively. 

The correlated sampling begins with uniform random 
number (URN) sampling with Latin Hypercube 
Sampling (LHS) [6]. The LHS is one of the URN 
sampling methods, resulting in well-dispersed URN with 
fewer samples. Fig. 2 displays the basic scheme of the 
LHS for 2-dimensional URN sampling with ten samples. 
Each domain is subdivided into equal meshes with the 
number of samples. The samples are chosen within the 
mesh where the mesh does not overlap along each 
direction. 

 

 
Fig 2. Sample Latin Hypercube Sampling 

 
After the production of the URN, the URN samples 

are transformed into the normal distribution. The normal 
distribution has a mean of zero and a variance of unity. 
The procedure can be done with inversed CDF 
(Cumulative Distribution Function) of normal 
distribution. The normal samples need to be correlated 
with the given correlation matrix. Assume that the 
normal samples are uncorrelated. Then, the correlation 
matrix of the multivariate normal sample matrix X can 
be expressed as in Eq. (2). 

 
 𝐶𝐶0 = 𝐸𝐸[𝑋𝑋𝑋𝑋𝑇𝑇] = 𝐼𝐼3×3 (2) 

 
where matrix 𝐼𝐼3×3 is a 3-by-3 square identity matrix. The 
diagonal and off-diagonal elements of the identity matrix 
are one and zero. Cholesky decomposition L of M can be 
written as Eq. (3) for target correlation matrix M. Note 
that the matrix L is a lower triangular matrix [7]. 

 
 𝑀𝑀 = 𝐿𝐿𝐿𝐿𝑇𝑇  (3) 

 

By multiplying matrix L to X, the samples’ correlation 
matrix can be written as Eq. (4). Multiplication of the 
matrix to sample X can be done with a linear 
combination of the multivariate samples. 

 

 

𝐶𝐶′ = 𝐸𝐸[(𝐿𝐿𝑋𝑋)(𝐿𝐿𝑋𝑋)𝑇𝑇] = 𝐸𝐸[𝐿𝐿𝑋𝑋𝑋𝑋𝑇𝑇𝐿𝐿𝑇𝑇]

= 𝐿𝐿𝐸𝐸[𝑋𝑋𝑋𝑋𝑇𝑇]𝐿𝐿𝑇𝑇

= 𝐿𝐿𝐼𝐼3×3𝐿𝐿𝑇𝑇 = 𝐿𝐿𝐿𝐿𝑇𝑇

= 𝑀𝑀 

(4) 

 
After the correlated multivariate normal samples are 

produced, the samples are converted into target 
distribution. In this case, the CDFs of accumulated 
FMFD parameters are utilized. The normal samples are 
changed into URN samples with CDF of normal 
distribution. Then the URN samples are converted into 
the target CDFs with inversed CDF of the target.  

The correlated multivariate normal distributions are 
transformed into input correlation.  

 
2.3 Iterative scheme 
 
According to the previous studies on correlated 

sampling, Since the FMFD parameters’ distribution are 
not Gaussian, the correlated sampling cannot return 
samples with exact correlation. However, the 
distributions of the FMFD parameters’ CDFs cannot be 
expressed analytically. Therefore, an iterative approach 
is adopted to correlate samples accurately.  

The approach extrapolates the input correlation matrix 
and the resulting correlation matrix. However, the matrix 
elements should be between -1 and 1. Therefore, sigmoid 
functions are utilized in the extrapolation. Sigmoid 
functions are functions defined within (−∞,∞) 
resulting in values within [-1, 1], with a non-negative 
derivative. In the iterative scheme, the error function is 
utilized. Error function erf(x) can be defined as Eq. (5) 
for the real number x. Also, the inverse of the error 
function exists, which can be expressed as erf-1(x). 

 

 erf(𝑥𝑥) =
2
√𝜋𝜋

� 𝑑𝑑𝑑𝑑 exp(−𝑑𝑑2)
𝑥𝑥

0
 (5) 

 
Given the correlation matrix of the accumulated 

FMFD parameters 𝐶𝐶0. Suppose that the target correlation 
matrix of ith iteration is 𝐶𝐶𝑖𝑖, resulting in samples with a 
correlation matrix 𝐶𝐶𝑖𝑖,𝑜𝑜𝑜𝑜𝑡𝑡. Then, the target correlation for 
the next iteration is perturbed by the distance between 𝐶𝐶0 
and 𝐶𝐶𝑖𝑖,𝑜𝑜𝑜𝑜𝑡𝑡 . The perturbation is done with the error 
function f(x) and its inverse function, f-1(x).  

 
 𝐶𝐶𝑖𝑖+1 = 𝑓𝑓(𝑓𝑓−1(𝐶𝐶𝑖𝑖) + 𝑑𝑑𝑖𝑖) (6) 

 
where distance 𝑑𝑑𝑖𝑖 can be calculated with Eq. (7). 
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 𝑑𝑑𝑖𝑖 = 𝑓𝑓−1(𝐶𝐶0) − 𝑓𝑓−1�𝐶𝐶𝑖𝑖,𝑜𝑜𝑜𝑜𝑡𝑡� (7) 

 
The correlated sampling is done with the perturbed 
correlation matrix. In the current iDTMC scheme, five 
iterations are performed after the initial correlated 
sampling.  

 
3. Numerical Result 

 
3.1 Problem Description 

 
SMR core problem is suggested as a model reactor 

problem. The cross-sectional view of the core is depicted 
in Fig. 3. The reactor core is composed of central fuel 
assemblies with Gadolinia fuel pins and peripheral fuel 
assemblies without Gadolinia fuel pins. Detailed 
specifications are tabulated in Table I.   

 

 
Fig 3. Cross-section view of the SMR core 

 
Table I: Specification of the SMR core 

Fuel pellet radius 0.5 cm 
Pin pitch 1.26 cm 

Cladding thickness 0.3 mm 
Reactor height 140 cm 

Uranium enrichment 3.8 weight-% 
Gd2O3 weight fraction 4 % 

Cladding Zircaloy 
Reflector H2O 

 
Based on the standard Monte Carlo method, 50 

inactive and 300 active cycles are utilized. The iDTMC 
scheme is implemented in the Monte Carlo iMC code. In 
this case, 30 inactive and 10 active cycles are used. To 
show the impact of the iDTMC method, the standard 
Monte Carlo was also performed with identical 
calculation conditions. The FMFD parameters are 
accumulated from the 16th cycle. For real variance 
estimation, 100 samples are produced to estimate the real 
variance with the correlated sampling. ENDF-B/VII.1 
cross-section and depletion library are utilized for 
calculation. Additionally, real variances are evaluated 
from 30 independent runs.  

 
3.2 Burnup-dependent criticality 

 

Fig. 4 depicts the burnup-dependent criticality of the 
reactor core. As shown in the plot, the keff value from the 
iDTMC solution agrees with the standard Monte Carlo 
solution. 

 

 
Fig 4. Burnup-dependent keff 

 
The real variance of the criticality is estimated with the 

correlated sampling. Fig. 5 plots burnup-dependent 
estimation of the real standard deviation of keff. Fig. 6 
shows the evolution of the variances on 0.25 EFPD. As 
mentioned in the previous section, the apparent variances 
of the iDTMC solution are underestimated due to inter-
cycle correlation. The plot implies that the iDTMC 
solution shows high precision from the first active cycle 
and can accurately estimate the real variance. 

 

 
Fig 5. Burnup-dependent keff standard deviation 

 

 
Fig 6. keff standard deviation on first burnup step 
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3.3 Power distribution 

 
Fig. 7 compares the relative standard deviation from 

the independent runs and correlated sampling. Detailed 
comparison along the centerline of the core is depicted in 
Fig. 8. The comparisons show that the real variance of 
power distribution can be accurately estimated while a 
minor overestimation exists. 
 

 
Fig 7. Relative standard deviations of power 

distribution on 650 EFPD from independent runs (left) 
and correlated sampling (right) 
 

 
Fig 8. Comparison of relative standard deviations of 

power distribution along the centerline on 650 EFPD 
 

3.4 Correlation Difference 
 
The iterative correlation sampling method tested its 

impact by comparing the correlation matrix. Fig. 9 shows 
the axial-averaged distribution of the correlation 
difference on 0 EFPD. The difference in the sample 
correlation matrix is defined as Eq. 8, where 𝐶𝐶 and 𝐶𝐶0 
stands for sample and target correlation matrices, 
respectively. The subscript of the matrix denotes the row 
and column index of an element of the correlation matrix. 

 

 �𝐶𝐶12 − 𝐶𝐶0,12� + �𝐶𝐶13 − 𝐶𝐶0,13� + �𝐶𝐶23 − 𝐶𝐶0,23�
3

 (8) 

 

 
Fig 9. Correlation difference distribution on 0 EFPD 

 

 
Fig 10. Average correlation difference 

 
4. Conclusion 

 
This work focuses on improving the real variance 

estimation scheme for the iDTMC method. The iDTMC-
based real variance estimation showed highly accurate 
estimation from single calculation, which require 
numerous independent calculations. The iterative 
scheme was applied to the correlated sampling scheme. 
Future studies will focus on correlated sampling 
improvement regarding the sigmoid function, number of 
iterations, and overrelaxation concept.  
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