

Development of BEPU Methodology using Multi-Physics Coupling Code based on RAST-K

UNIST CORE Lab.

Jinsu Park and Deokjung Lee*

2023.05.18 (Th)

KNS2023S

CONTACT

Ulsan National Institute of Science and Technology Address 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Korea Tel. +82 52 217 0114 Web. www.unist.ac.kr Computational Reactor physics & Experiment lab Tel, +82 52 217 2940 Web, reactorcore.unist.ac.kr

Contents

- **1. Introduction**
- 2. Multi-Physics Coupling
 - Coupled codes
 - Coupling parameters
 - Coupling algorithm
- 3. BEPU Analysis
 - Uncertainty quantification methodology
 - Rod ejection scenario
 - Reactor safety parameters
- 4. Conclusions

Development of BEPU Methodology using Multi Physics coupling code based on RAST-K

Nodal Diffusion Code RAST-K v2

- Developed by UNIST since 2017
- Funded by KHNP-CRI

Features and methodologies

- XS generation: STREAM
- XS functionalize
- Nodal solver: MG UNM + CMFD
- Pin-by-pin kernel
- 1-D channel TH solver
- Micro depletion with CRAM
- Core design & analysis

Application

- Practical PWR design
- V&V for PWR in Korea
- Multi-physics coupling

Application of RAST-K

- Necessity of Multi-Physics Coupling
 - Independent development of reactor analysis code in each physics area
 - Ex.) power history from Neutronics \rightarrow TH and safety analysis
- - \rightarrow Fuel performance analysis
 - Advantage of one-way coupling
 - Easy to use
 - Code maintenance
 - Obtain conservatism
 - Disadvantage of one-way coupling
 - Accumulation of conservatism
 - Strengthening of safety-related regulation
 - Increase of demand for high-fidelity solution excluding conservatism

IJCIST CORE

Simplified TH module

1D heat convection of coolant

- Fixed pressure during steady state (negligible pressure drop)
 - > Solve only mass continuity and energy conservation
 - > Evaluation of water properties at single pressure
- Closed channel
 - > Parallel 1D channel / No cross-flow
- Core exit water condition remains sub-cooled
 - > Dittus-Boelter heat regime / Single-phase formulation

• 1D heat conduction in fuel

- Heat produced in pellet is deposited in the coolant
 - > No heat conduction in axial direction
- Ignore TCD effect / Constant gap conductance

• Accuracy of simplified TH module for transient?

- Two-phase? Heat regime? Cross-flow?
- Pellet-to-cladding interaction? Dynamic gap conductance?

UNIST CORE

Objective of BEPU Approach

- Demand of best-estimate solution
 - Pessimistic hypothesis provides excessive conservatism
 - Impossible to satisfy enforced safety regulation
- UQSA
 - Accuracy and its confidence level obtained simultaneously
- Source of uncertainty
 - Modeling and simulation
 - › Geometry (manufacturing)
 - > Material property, ...
 - Model (including physical and mechanical properties)
 - Nuclear data
 - > Cross-section
 - > Covariance matrix
- Stochastic sampling
 - Statistical process

- BEPU approach vs. Conservative approach
 - 1) Conservative approach

- BEPU approach vs. Conservative approach
 - 2) Strengthen acceptance criterion

- BEPU approach vs. Conservative approach
 - 3) Necessity of BE solution

- BEPU approach vs. Conservative approach
 - 4) Achieve more margin even with BE solution + Uncertainty

2. MP Coupling based on RAST-K

Development of BEPU Methodology using Multi Physics coupling code based on RAST-K

Summary of Coupled Codes

• CTF

- For LWR modeling, subchannel, two-phase, ...
- Provide CTF_Coupling_Interface module

	Internal TH solver	CTF
Calculation unit	Equivalent pin (node-wise)	Pin-wise (subchannel)
Two-phase	No	Yes
No. of conservation equation	1	8
Cross-flow	No	Yes
Boron tracking	No	Yes
CHF & DNBR	Yes (limited W-3)	Yes
Burnup dependent material property	No	No
Fuel mechanical model	No	No
Computational time	Low	High (~5 hours)
Memory	Low	High (2.7GB)

UNIST CORE

Summary of Coupled Codes

- FRAPCON & FRAPTRAN
 - LWR fuel rod
 - Pellet-to-cladding heat transfer, mechanical deformation, pellet-to-cladding mechanical interaction, elastic-plastic deformation, fission gas release, cladding oxidation, hydrogen pickup, burnup, ...

Summary of Coupled Codes

• FRAPI

- Initialization
- Time-step advancing
- Data exchange
- Data saving and loading on memory or file
- Writing restart file
- Multi-rod simulation

Coupling Parameters

Data exchange between coupled code

• Power ⇔ Coolant ⇔ Fuel

Channel centered

Pin centered

Coupling Algorithm

Flowchart of coupled code

Depletion Calculation using RAST-K MP

F F 10 0 0 0 Т T 11 Т 0 0 12 0 F 0 F 0 F 0 Т 0 T 13 14 0 F 0 F 0 15 F 0 Т 0 F Т F F F Τ 16 17 F Τ F Τ

Unist Core

• 241 FA

J

0

9

K

0

L

Т

Μ

0

Burnup at Cycle 1 (BOC/MOC/EOC)

BCDEFGHJKLMNPRST

A B C D E F G H J K L M N P R S T

Fuel Thermal Conductivity at Cycle 1 (BOC/MOC/EOC)

A B C D E F G H J K L M N P R S T

RST JK P - L. M N 3.8 11 3.6 12 13 34 14 3.2 15 16 17

Fuel Thermal Conductivity vs. Burnup

UNIST CORE

Gap Conductance at Cycle 1 (BOC/MOC/EOC)

Gap Conductance vs. Burnup

Unist core

Fuel Average Temperature at Cycle 1 (BOC/MOC/EOC)

Summary

Compared t	to Measured	NDR	RAST-K standalone	RAST-K MP
CBC	Mean	-2.85	1.26	1.18
	Abs. STD	27.10	32.89	33.45
ASI	Mean	0.0004	0.0013	0.0009
	Abs. STD	0.0144	0.0131	0.0126
FA Power	Mean	0.002	0.003	0.003
	Abs. STD	0.019	0.018	0.018

Performance

Components	RAST-K standalone	Ratio	RAST-K MP	Ratio
Total Simulation	<mark>208.893</mark>	-	<mark>15477 (=4.3h)</mark>	-
1. RAST-K	206.724	98.96%	443.007	2.86%
1.1 Initialize	24.040	11.51%	30.278	0.20%
1.2 Neutronics	18.243	8.73%	48.903	0.32%
1.3 TH feedback	19.449	9.31%	15.551	0.10%
1.4 XS feedback	48.401	23.17%	114.528	0.74%
1.5 Depletion	81.538	39.03%	103.927	0.67%
1.6 Pin power recon.	1.721	0.82%	65.513	0.42%
1.7 Write	13.332	6.38%	64.307	0.42%
2. CTF	-	-	<mark>8637 (=2.4h)</mark>	55.80%
3. FRAPCON	-	-	6395.342 (=1.8h)	41.32%

3. BEPU Methodology

Development of BEPU Methodology using Multi Physics coupling code based on RAST-K

• CSAU

- Code Scaling, Applicability and Uncertainty
 - published in 1990 by the U.S.NRC
 - RELAP5/MOD3.1 for PCT during LBLOCA

• K-REM

- KINS-Realistic Evaluation Methodology
 - originally developed based on CSAU in 1991
 - RELAP5/MOD3.1K for PCT during LBLOCA

$\bullet PCT_{FINAL} = PCT_{95/95} + B_{SCALE} + B_{SET} + B_{IET} + B_{PLANT}$

- B_{SET} , B_{IET}
 - Bias from the discrepancy between calculation result and experiment result from SET/IET
- **B**_{SCALE}
 - Bias from the scaling distortion of phenomena or model of code
- B_{PLANT}
 - Bias from the uncertainty of operating parameter of plant, which is excluded in step 3
- *PCT*_{95/95}
 - Combination of PCT and statistical uncertainty from individual models and variables with 95% probability level and 95% confidence level
 - *PCT*_{95/95} was determined through a large number of MC simulation for the response surface methodology produced from the sampled code calculation results, which was similar to the CSAU method
- The 95/95 tolerance limit of PCT can be directly calculated without response surface methodology in non-parametric statistics based on minimum number of simulation from Wilks's formula

Stochastic sampling method

- Latin Hypercube Sampling
 - Partitioning the CDF into even region, randomly pickup in each region
 - Available to sample Uniform/Normal distribution
- Proper number of samples?
 - Wilks' non-parametric formula: $\sum_{j=0}^{N-p} \frac{N!}{(N-j)!j!} \alpha^j (1-\alpha)^{N-j} \ge \beta$
 - Ex. Wilks' theorem for a one-sided 3rd-order statistics tolerance limit

$$1 - \alpha^{N} - N(1 - \alpha)\alpha^{N-1} - \frac{N * (N - 1)}{2}(1 - \alpha)^{2}\alpha^{N-2} \ge \beta$$

Various Tables for statistically meaningful number of simulations are derived from the above Equation (2) for different orders' one-sided approach, Equation (4) for the 1^{st} order two-sided approach and Equation (5) for the 2^{nd} order two-sided approach. Table 1 to Table 3 summarize the minimum numbers of code runs necessary for the 1^{st} , 2^{nd} and 3^{rd} order statistics, respectively, when users require to perform the simulations for the one-sided approach. Table 4 and Table 5 summarize the numbers for the 1^{st} and 2^{nd} order statistics each for the two-sided approach. For example, the minimum number of required code runs for the condition of 95th percentile / 95 % confidence level are:

- 59 for 1st order one-sided,
- 93 for 2nd order one-sided,
- 124 for 3rd order one-sided,
- 146 for 1st order two-sided (against the present 93) and
- 221 for 2nd order two-sided.

UNIST

Stochastic Sampling Method

- Nuclear Data Perturbation
 - 72g covariance matrix for 144 nuclides
 - ENDF/B-VII.1 library

Input Parameter Perturbation

• TH simulation

- Core power, Coolant flow rate, System pressure, Inlet temperature
- Turbulent-mixing coefficient, Weight of void drift model
- Spacer grid width, Spacer grid loss coefficient, Guide tube diameter
- DMHR

• FP simulation

- Pellet density, Pellet outer diameter, Initial gap thickness, Cladding thickness, Rod fill gas pressure, Plenum length, U-235 concentration, Gadolinia enrich, Pellet roughness, Cladding roughness
- Dish shoulder width, Dish height

Reference

- UAM Benchmark Phase I & II
- Paper (Experimental Database of Two-Phase Natural Circulation with Local Measurements, PNE, 116:124, 2019)
- NUREG/CR-7001, 7022, 7024
- Assumption

UNIST CORE

UQ for Depletion Calculation

Summary of UQ for depletion calculation

- Uncertainty of design parameter mainly come from nuclear data
- However, uncertainty of PFT come from ?

Parameter	State	All	Input parameter	Nuclear data
CBC	BOC	1231.91 ± 79.77	1232.72 ± 2.47	1232.07 ± 80.00
	MOC	743.58 ± 69.46	741.86 ± 4.08	743.64 ± 69.63
	EOC	-10.97 ± 54.39	-6.06 ± 7.79	-10.60 ± 53.76
	BOC	-0.0071 ± 0.0076	-0.0083 ± 0.0004	-0.0073 ± 0.0066
ASI	MOC	0.0181 ± 0.0067	0.0181 ± 0.0022	0.0179 ± 0.0046
	EOC	0.0166 ± 0.0127	0.0158 ± 0.0048	0.0167 ± 0.0118
	BOC	1.6134 ± 0.0201	1.6011 ± 0.0027	1.6124 ± 0.0212
Fq	MOC	1.6756 ± 0.0173	1.6629 ± 0.0055	1.6748 ± 0.0171
	EOC	1.6041 ± 0.0383	1.5938 ± 0.0148	1.6021 ± 0.0343
Max. PFT	BOC	1262.01 ± 21.94	1256.64 ± 14.66	1261.97 ± 14.43
	MOC	1349.24 ± 23.31	1337.54 ± 16.69	1348.76 ± 16.54
	EOC	1399.38 ± 29.25	1388.52 ± 19.94	1395.24 ± 24.28

Scenario

• Initially R5, R4 Bank fully insertion, R3 40% insertion

Transient Result (Linear pin power dist.)

- Transient Result
 - Maximum fuel centerline temperature
 - Maximum fuel enthalpy
 - Peak at the end of transient

UNIST CORE

Transient Result

- Max coolant temperature
 - Rises more than 10 C from inlet
- MDNBR
 - Heat capacity of fuel pellet

UNIST CORE

Transient Result

- Black line = Nominal
- Red line = 95th percentile among all perturbed sample
 - 95% confidence that the true peak value is below the 95th tolerance limit

Safety parameters

Summary of UQ for EOC HZP REA

• Current BEPU methodology reduce the safety margin?

Parameter	Nominal	Mean ± Abs. STD	95/95 Tolerance Limit
Peak power (%)	99.73	117.86 ± 24.60	163.02
Peak reactivity (\$)	1.177	1.194 ± 0.022	1.234
Peak fuel centerline temp. (C)	516.55	526.69 ± 42.62	649.43
Peak fuel enthalpy (cal/g)	26.95	27.96 ± 1.63	32.73
Peak fuel enthalpy-rise (cal/g)	9.58	10.61 ± 1.69	15.53
Peak outlet temperature (C)	296.61	296.5 ± 2.79	301.51
MDNBR (-)	1.517	1.476 ± 0.104	1.309

Hot pin + Simplified TH vs. Hot pin + CTF + FRAP vs. MP

• Fuel centerline temperature

UDIST

Hot pin + Simplified TH vs. Hot pin + CTF + FRAP vs. MP

• Fuel enthalpy

UDIST

Hot pin + Simplified TH vs. Hot pin + CTF + FRAP vs. MP

UDIST

4. Conclusions

Development of BEPU Methodology using Multi Physics coupling code based on RAST-K

Conclusions

Multi-physics Coupling

- Coupling with subchannel TH code, CTF
- Coupling with fuel performance, FRAPCON & FRAPTRAN (via FRAPI)
- Detail coupling parameter and algorithm is demonstrated
- Perform multi-cycle depletion calculation
 - Fuel temperature behavior during depletion is changed by considering detail fuel behavior such as TCD and dynamic gap conductance
 - It is observed that simplified TH module is enough for SS depletion

BEPU Methodology

- Stochastic sampling method is employed
 - Nuclear data & Input parameters perturbation
- UQ for depletion calculation
 - Uncertainty of global parameters (CBC, ASI, Fq) is mainly coming from nuclear data pert
 - Perturbations of XS and input evenly contribute to uncertainty of TH-related outputs

• Perform UQ for REA transient simulations

- Tolerance limit of safety parameter can be observed by BEPU methodology

UNIST CORE

#