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1. Introduction 
 

The pile-up pulses generate when two or more pulses 
are detected too closely in time to be distinguished as 
separate events. It can lead to a number of problems in 
radiation measurements. First is a reduction in the 
accuracy of the measured radiation intensity. The pile-up 
pulse has a higher amplitude than that of a single pulse, 
and its energy is a combination of the energies of the 
individual pulses. As a result, the measured intensity of 
the radiation is overestimated, and the energy spectrum 
obtained from the measurement is distorted. Also, a 
reduction of energy resolution can be generated because 
their energies are combined, leading to a loss of energy 
resolution in the detector.  

To overcome the pile-up problems, several techniques 
have been developed such as pile-up rejection, and pile-
up separation, in which overlapped pulses are separated 
based on the mathematical modeling of the pulse shape 
[1-3] or a numerical method [4-6]. But, they have several 
troubles. In case of pile-up rejection, count loss occur 
because it discards the impure signals. In case of pile-up 
separation, considerable effort and much time is required 
for correcting the signals.  

Recently, deep learning-based technologies have been 
applied to various fields of radiation measurement. 
Among them, 1D CNN (Convolutional neural network), 
which extracts features from sequential data such as time 
series data or signals, has been proposed as a model for 
pulse height estimation because it has the advantage of 
being more effective in capturing complex patterns [7-8].  

In this research, 1D CNN-based study for pile-up 
correction is conducted for Gamma-ray spectroscopy in 
high radiation environment. Pulse dataset is obtained 
experimentally. In order to evaluate the performance of 
the model due to noise, noise-added dataset is established 
by applying Gaussian random noise. After optimizing the 
CNN structure, evaluation results for noise-free, noise, 
and noise-mixed datasets are presented. 
 

2. Material and Methods 
 
2.1 Establishment of Dataset 
 

To establish a dataset for the CNN model, piled-up 
pulse data measured in high radiation environments 
might be required. However, obtaining this data through 
an experiment was practically limited. To address this 
issue, in this study, we obtained individual, non-
overlapping pulses through the experiment. And then we 

artificially synthesized each measured pulse, considering 
high radiation environments of more than 1Mcps, to 
create a piled-up dataset. Furthermore, in order to 
consider environmental characteristics commonly found 
in high radiation fields, noise was randomly added to the 
dataset. 

Firstly, to obtain non-overlapped pulses, we 
constructed an experimental setup as shown in Figure 1. 
The experiment was conducted by using LaBr3 
scintillation detector (Saint-Gobain, 0.381 cm × 0.381 
cm) which didn’t have preamplifier. Sources of the point 
type (152Eu (3.02 MBq), 137Cs (2.92 MBq), 60Co (2.54 
MBq)) were used. The output signals from the detector 
were amplified by CAEN, A1423B and digitized by 
DT5730 which had 500 MSPS. The length of the 
measured pulse was 150 ns length approximately. They 
were recorded one by one in the window of the 1 us 
length which was corresponding to 500-channel-long 
signal. The height of a raw signal was obtained using the 
peak-finder function in the Scipy library. 

 

 
Fig. 1. Experimental setup 

 
As a next step, we artificially synthesized the raw 

signal to make piled-up signals. The number of piled-up 
signals was determined in the range of 3 to 9 according 
to the probability of the Poisson distribution (λ=1). It 
means that pile-up rate was 100%. The occurrence of 
pile-up events was controlled by adjusting the timing 
among pulses, whose interval ranged from 10 ns to 100 
ns. In this process, the Gaussian random noise (Its 
standard deviation was 0.1) was applied to raw signals to 
consider the noise effect on the CNN model.  

As the last step, for piled-up signals, 32-channel-long 
samples around the peaks were sliced using the peak-
finder. Those were used as input features of the CNN 
model. The dataset was composed of a total of 1.0×106 
sliced piled-up signals using 3.5×106 raw signals. Out of 
the entire dataset, 6.0×105 were used as training data, 
2.0×105 were used as validation data, and 2.0×105 were 
used as test data. To evaluate the performance of the 
model depending on the presence of noise, we created 
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three versions of the dataset for noise X, noise O, and 
noise mixed versions. Each of the three datasets was used 
to train a model, and the trained models were tested using 
the three versions of the dataset. 

 
2.2 Optimization of 1D CNN model 
 

The structure of the 1D CNN model was constructed 
in a Python environment using the Pytorch library. The 
model was optimized by analyzing performance factors 
calculated from training, verification, and testing based 
on noise-free datasets. The model was trained using a 
training set for 500 epochs using the Adam optimizer 
with a cosine annealing learning rate scheduler. The 
factors for the performance evaluation were utilized such 
as calculation time, learning time, results of loss function 
for training and validation, comparison between the 
reference spectrum and the predicted spectrum of CNN 
model, and average estimation accuracy of Eq. (1) for the 
pulse height.  
 

Estimation accuracy =
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Figure 2 shows the optimization results of the 1D CNN 

structure for the estimation of pulse heights. Two 
convolutional layers contained 64, and 32 convolution 
filters. The length of convolution filters was set to 3 and 
the stride was set to 1. The maximum pooling layer was 
applied at the end of the last convolutional layer to 
extract the useful data. A flattening layer was the role of 
making the dimension of the output data into one 
dimension. The number of hidden layers was three. A 
rectified linear unit (ReLU) was used as an activation 
function for the convolutional and hidden layers. 

 

 
Fig. 2. Schematic of 1D CNN model for pile-up correction 

 
3. Result and Discussion 

 
3.1 Predicted result without the noise effect 
 

Figure 3 shows the reference and piled-up spectra, as 
well as the predicted spectrum for piled-up spectrum 
without noise pulses using a 1D CNN model. The result 
of the pile-up correction from the piled-up spectrum was 
a good agreement for the reference spectrum and the 
average estivation accuracy was calculated as 99.302 %. 
This result implies that our model has the ability to 
restore the intrinsic energy resolution of the detector 
even though the signal is superimposed for the absence 
of noise effects.  

 

 
Fig. 3. Reference spectrum and piled-up spectrum, predicted 
spectrum of pile-up correction results for 1D CNN model. 

 
3.2 Predicted result with the noise effect  
 

Figure 4 presents predicted results (60Co peaks) of 1D 
CNN model according to the kinds of training dataset 
based on three cases. Most results show a good 
correction performance in the range below 1 MeV. 
However, in previous studies, resolution degradation and 
peak shift were found in the adjacent peaks of 60Co 
mentioned [8]. Accordingly, Figure 4 presents only the 
results for 60Co peaks for efficient analysis. The three 
datasets used in the training were noise-free datasets 
(Noise X), only noise datasets (Noise O), and mixed 
datasets with and without noise (Noise mixed). For each 
model trained with three datasets, we tested the 
performance on pile-up correction based on 1D CNN 
models using three different types of datasets. The test 
results for noise X show a good agreement for all training 
models. However, peak shift was observed in models 
trained with the dataset containing only noise pulse. On 
the other hand, in the case of the test result on Noise O, 
it was confirmed that the model trained with Noise X 
datasets didn't respond effectively to overlapped noise 
pulses. In other models, resolution degradation was 
found in adjacent peaks of 60Co. Lastly, the test results 
on the Mixed noise dataset show that pile-up correction 
didn't perform well for the noise dataset in the case of the 
model trained with the Noise X dataset. However, other 
models gave good prediction results similar to the 
reference spectrum. In particular, the model trained with 
the mixed noise dataset had a good result as an estimation 
accuracy of 98.86%, which was better than the model 
trained with the dataset that included only noise pulses 
(98.52%). 
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Fig. 4. Predicted results of 1D CNN model according to the 
kinds of training dataset based on three cases. 
 

4. Conclusion 
 

In this study, we conducted 1D CNN-based study for 
pile-up correction considering noise effect. As a result, 
our model had a good correction performance for pile-up 
pulses with the noise when the mixed noise dataset was 
used as training dataset. However, we hadn't fully solved 
the problem of energy resolution degradation at adjacent 
peaks (60Co) observed in previous studies [8]. In future 
works, we will perform a comparative study using other 
models and choose the best pile-up correction model for 
radioisotope identification & analysis in a high-radiation 
environment. 
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