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1. Introduction 

 
This study explores the feasibility of applying 

explainable AI (XAI) technology to detect anomalies in 

nuclear reactor core.  

The operation of pressurized water reactors (PWRs) 

has recently increased in cycle length and power, leading 

to a greater need for anomaly mitigation technologies 

such as predicting axial offset anomaly (AOA). 

Additionally, the importance of nuclear energy has 

grown in response to the need to address climate change 

and stabilize energy supply. Accordingly, the need for 

enhanced safety measures in nuclear energy has also 

increased. As part of these efforts, studies on AI-based 

nuclear reactor core anomaly detection have been 

conducted [1][2][3]. It has constructed a simulation-

based machine learning (ML) technology to diagnose 

and predict control rods mis-location, coolant inlet 

temperature asymmetry, CRUD induced power shift 

(CIPS), in-core detector signal error, and so on by using 

a nuclear reactor analysis code called RAST-K [4]. 

Despite the superior performance of AI technology, 

the application of AI in mission-critical industries such 

as financial services, healthcare, and nuclear power is 

limited due to its black box nature which refers to the 

complex decision-making processes of MLs, where the 

inputs and outputs of the model are known, but the 

internal workings of the model and how it arrives at its 

decisions are opaque and not easily explained [5]. To 

enhance the practical applicability of AI-based anomaly 

detection for nuclear reactor core operation industry, 

feasibility of applying explainable AI technologies was 

studied. 

 

 
Fig. 1. Concept of XAI-based nuclear reactor core anomaly 

detecting system during operation. 

 

2. AI-based core anomaly detection method 

 

In this section, a framework of implementing ML 

system for core anomaly detection is described. 

 

2.1 Data Acquisition 

 

Collecting operational data of a nuclear core, 

especially regarding core anomalies, can pose a 

challenge due to its potential danger and the high cost 

involved. Furthermore, the strict safety regulations in 

place at nuclear power plants make it difficult to gather 

data from actual reactor operations. To overcome these 

difficulties, a simulation-based data generation method 

was adopted to generate synthetic data that represents a 

range of operating conditions and scenarios. This 

synthetic data can then be used to train and validate 

machine learning models. The RAST-K [4] nuclear 

reactor core analysis code was utilized to generate this 

synthetic reactor operation data, based on an OPR-1000 

reactor core. The procedure for generating this data is 

outlined as follows: 

 

① Building a nuclear reactor core model by 

sampling input parameters. 

② Conducting core calculations using RAST-K on 

the model created in step ①. 

③ Extracting relevant parameters from the output 

text file.  

 

By repeating steps ① to ③, output parameters of 

various core model are collected in a single text file 

formatted as ‘csv’, which is then directly used for 

training. The data is labeled as normal or anomaly based 

on the core conditions determined by the input 

parameters sampled in step ① or the power shape 

calculated in step ③. A simulation-generated operation 

data includes class label, control rods position signals 

which is indicated by operator (73 features, feature 0~72), 

in-core instrument (ICI) signals (225 features, feature 

73~297) and ex-core detector signals (18 features, 

feature 298~315), representing power distribution inside 

a reactor vessel. Figure 2 shows an example of dataset.  

The feasibility study for XAI-based core anomaly 

detection focused on Axial Offset Anomaly (AOA) 

caused by CRUD-Induced Power Shift (CIPS). The CIPS 

model simulates the buildup of CRUD that can result in 

an axial power tilt during operation. A snapshot of core 

operation data is labeled as 'CIPS' if a severe AOA occurs 

within the next 30 days, where the Axial Shape Index 

(ASI) deviates from the design and operating values by 

more than 3%. The generated synthetic data represents 
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operating conditions at 100% power level, at the middle 

of cycle (MOC) with a burnup of 8.0-9.0 GWd/MTU. 

 
2.2 ML Model Description 

 
Since the generated training data has labels, the model 

belongs to the supervised learning. Target of the learning 

is to categorize a core operation state as either belonging 

to normal or abnormal, thus making it a task of 

classification learning. An ensemble ML model based on 

decision tree called Random Forest was used as classifier. 

Random Forest (RF) is a machine learning algorithm 

that combines multiple decision trees (DTs) using a 

technique called bagging to improve accuracy and 

reduce overfitting [7]. In a RF, final prediction is made 

by aggregating the prediction of all decision trees in the 

forest. Each tree in the forest is built independently using 

a different subset of the training data and input features. 

It is a powerful and versatile algorithm that is useful for 

a variety of tasks. To construct the random forest model, 

200 decision trees were employed and trained on subsets 

of the data containing 16 features, with a maximum depth 

of 16. 

 

 
Fig. 2. Example of dataset for training and testing nuclear 

reactor core anomaly detecting ML models. 

 

3. Explainable AI methods 

 

Various explainable AI techniques were applied to the 

ML model developed for core anomaly detection to 

assess the feasibility of its applicability. This section 

describes XAI methods applied to the ML model. 

 

3.1 Mean Decreased Impurity 

 

Mean decreased impurity (MDI) is a feature 

importance evaluation method that measures how much 

a feature reduces the impurity of a DT in a RF. The 

importance of each feature is calculated by averaging its 

reduction in impurity across all trees in the forest. 

Calculation of impurity reduction by a i th feature during 

node splitting in a DT is shown as Eq. 1 and Eq. 2. 

Gini impurity at node j  is defined as the probability of 

each class ( )p k : 
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Reduction of impurity during splitting a node j  by 

the i th feature into two nodes, called left node and right 

node, is as follow: 
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The MDI can guide feature selection and engineering 

efforts but may not be accurate in models with highly 

correlated features. 

 

3.2 Permutation Importance  

 

Permutation importance [8] evaluates feature 

importance in a machine learning model by randomly 

shuffling values of individual features and observing 

changes in the model's performance as written in 

Equation (3). Features that are important to the model 

will cause significant decreases in performance when 

shuffled. Since it calculates difference between 

performance on original data and shuffled data, it can be 

performed with a single model without retraining or 

cross-validation. While it is useful for identifying critical 

features, it may not capture interactions or accurately 

measure highly correlated feature sets. 

 

     ( ) ( )iI A Original A Permuted= − .  (3) 

 

3.3 Local Interpretable Model-agnostic Explanations 

 

Local interpretable model-agnostic explanations 

(LIME) [9] is a methodology for XAI that explains any 

machine learning model's predictions by generating a 

surrogate model around a specific data point of interest. 

To generate a local explanation with LIME, many 

synthetic samples or perturbations are generated by 

randomly modifying the features. The synthetic samples 

are used to train simple, interpretable surrogate model, 

which is then used to identify the features that are most 

important for the original model's predictions at the 

selected instance. LIME adopts a model-agnostic 

approach, and it is useful for interpreting complex 

models, identifying biases, and increasing transparency 

and accountability in AI systems. 

 

3.4 Shapley Additive Explanation 

 

Shapley additive explanation (SHAP) [10] is a 

methodology for XAI that explains individual 

predictions made by machine learning models. It assigns 

an importance value to each feature based on its 

contribution to the prediction, using game theory, thus 

computing SHAP values of each feature. SHAP values 

can be used to improve model accuracy, identify biases, 

and increase transparency and accountability in AI 

systems. It has been widely applied in various fields and 

is particularly useful for high-dimensional models. 

Shapley value 
i  of a feature i  can be calculated as: 
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where F  is subsets of all features, S  is all possible 

subsets of F  excluding the feature i , ( ) ( )S i S i S Sf x f x−  

is a difference of predictions from two models, a model 

S if  is trained with feature i  present and the other model 

is trained with the feature withheld. 

 

4. Results 

 

4.1 Classifier Model Performance 

 

Performance of the ML model learned with the 

simulation-based training data is written in Table I with 

evaluation metrics such as accuracy, precision, recall 

scores, which are defined as Eq. 5~7, and Receiver 

Operating Characteristic (ROC) curve in Figure 3.  
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Table I. Classification evaluation metrics for the RF 

model on detecting CIPS. 

 Accuracy Precision Recall 

CIPS 0.8767 0.4231 0.9698 

 

 
Fig. 3. ROC curve of the RF model on detecting CIPS 

 

Table I shows the evaluation metrics for the ML model 

used to detect CIPS, including accuracy, precision, and 

recall scores of 87.7%, 42.3%, and 97.0%, respectively. 

It's important to note that the labeled data used for this 

model is imbalanced, which can cause a discrepancy 

between the precision and recall scores.  The imbalanced 

ratio for the dataset is 0.10, which means that the 

proportion of instances in the minority class to the 

majority class is very small. Despite this challenge, the 

classifier is able to predict the occurrence of CIPS up to 

30 days in advance with 97% recall score. This is a 

promising result and suggests that the model is effective 

in detecting CIPS, even in an imbalanced dataset. 

 

4.2 Global Feature Importance 

 

The importance of each feature, including 73 control 

rod positions, 225 ICI signals, and 18 ex-core detector 

signals, was evaluated using both Mean Decreased 

Impurity (MDI) and Permutation Importance (PI) in 

relation to the CIPS detection model and the dataset. 

Figure 4 show importance of each feature estimated by 

both methods. Figures 5 and 6 shows the radial 

distribution of feature importance obtained by 

integrating importance of five axial ICI signals and three 

ex-core detector signals each. In contrast, Figure 7 shows 

the feature importance of ICI signals from five axial 

levels obtained by integrating the radial signals from the 

same level. 

PI considers the change in model performance when a 

feature is randomly shuffled. If shuffling a feature leads 

to an increase in performance, then that feature is 

assigned a negative importance score as shown in Figure 

4. In both methods, features 1 to 73, which represent 

control rod position, are shown to have negligible 

importance. This is because control rod position is fixed 

in generating core models with full power operation and 

does not affect model performance. 

Accounting for radial feature importance with MDI 

shows that the ICI signals at the periphery region, where 

fresh fuel is loaded, are relatively important. Fresh fuel 

assembly leads to higher power, thus making CRUD 

more likely to form and causing power depression. On 

the other hand, results from the PI method show 

ambiguous due to the high correlation among features in 

the reactor core system.  

However, both methods agree on features at the top 

level are evaluated to the most important since CRUD 

deposit accumulates at the top of the core. 

 

 

 
Fig 4. Feature importance estimated by mean decreased 

impurity (MDI) and permutation importance (PI) 
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Fig. 5. Axially integrated feature importance of ICI and 

ex-core detector signal evaluated by MDI 

 

 
Fig. 6. Axially integrated feature importance of ICI and 

ex-core detector signal evaluated by PI 

 

 
Fig 7. Radially integrated feature importance of 5 

different axial levels of ICI detector 

 

4.3 Interpreting Model Predictions by Instance 

 

This section explores the interpretability of an ML 

model using two popular explainability methods: LIME 

and SHAP. LIME and SHAP are both post-hoc 

explainability techniques that can be used to help 

understand how the model is making its predictions. The 

results of the analysis using these methods are presented 

in this section, along with a comparison of their 

effectiveness in explaining the model's predictions on 

individual instances of the CIPS data. To accomplish this, 

labeled CIPS data with a label of ‘1’ and normal data 

with a label of ‘0’ were used. 

The features were ranked based on the absolute value 

of local model coefficient and Shapley value. Out of 316 

features, top ranked 20 were identified as the most 

important features by each interpreting methods as 

shown in Figure 8 and 10, for the prediction of ‘CIPS’ 

and ‘Normal’, respectively. Among these 20 important 

features, 16 (14 features for prediction on ‘Normal’) 

were identified as important by both methods for ML 

model’s prediction of ‘CIPS’, showing consistency of 

explanation between the two methods. The important 

features consist of ICI signals, and their location are 

shown in Figure 9 and Figure 11. All of them are located 

at top (5th level) or bottom (1st and 2nd level) of fresh fuel 

assemblies at periphery and center of the core, where the 

appearance of CRUD affects most. 

 

 
(a) LIME                              (b) SHAP 

Fig. 8 Top 20 important features contributing for ML to 

predict as ‘CIPS’ evaluated by LIME and SHAP 

 

 
Fig. 9. Location of ICI channel whose signals are 

evaluated as important by both LIME and SHAP on ML 

model’s prediction on ‘CIPS‘. 
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(a) LIME                              (b) SHAP 

Fig. 10. Top 20 important features contributing for ML 

to predict as ‘Normal’ evaluated by LIME and SHAP 

 

 
Fig 11. Location of ICI channel whose signals are 

evaluated as important by both LIME and SHAP on ML 

model’s prediction on ‘Normal’. 

 

5. Conclusions 

 

This study utilized different explainable AI (XAI) 

techniques to examine the feasibility of applying them on 

a machine learning (ML) framework for detecting 

anomalies in a reactor core. Specifically, CRUD-induced 

power shift (CIPS) was used to evaluate the effectiveness 

of the XAI methods, taking account into its nature, it is 

known that CRUD is more likely to appear in the top 

region of the core and near high power fuel assemblies 

such as fresh fuel assembly, resulting in local power 

deviation at those regions and their opposite regions. 

A random forest classifier (RF) trained with 

simulation-based dataset was employed as the CIPS 

predictive model with over 90% accuracy. Local and 

global analyses of feature importance were conducted to 

interpret the ML model’s prediction. Among the input 

parameters, control rod position and ex-core detector 

signals are relatively insignificant according to all 

methods. The global feature importance analysis 

identifies that features from the top of the core are 

important, while local interpreting methods identify 

signals from both the top and bottom of the core as 

important. This is because LIME and SHAP can handle 

correlated features by considering their interactions and 

dependencies, thus identifying features at the bottom 

region as important, which is proper understanding of the 

nature of CIPS. MDI, LIME, and SHAP agree that 

features near the fresh fuel region where CRUD appears 

are important. 

This study explored feasibility of using XAI methods 

on ML-based core anomaly system. The XAI methods 

were able to explain the nature of CIPS well, even 

without information related to the state. In future studies, 

further investigation on the explainability of the ML 

model for nuclear reactor core anomaly detection will be 

conducted to improve its reliability and will be expanded 

to various core anomaly situations. 
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