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1. Introduction 

 
According to the continuous use of nuclear energy, the 

amount of spent nuclear fuel waiting for the final 

disposal has been increasing progressively. Therefore, it 

is highly required to establish a disposal plan for those 

high-level wastes because of its remarkable radiotoxicity 

and potential hazards to the environment. 

Sorption reaction is considered to be one of the major 

geochemical reactions hindering the migration process of 

various radionuclides in the geologic repository-relevant 

condition. In general, the sorption behavior of 

radionuclides can be explained with the distribution 

coefficient (Kd). Since the Kd is a conditional parameter 

and thus is dependent on various environmental 

conditions (i.e. pH, ionic strength, mineral type, solid-

liquid ratio, etc.), establishing a model to predict the 

sorption behavior of radionuclide is known to be highly 

complicated.  

The objective of the present work is to predict the 

distribution coefficient of various radionuclides onto the 

bentonites by using the machine learning-based random 

forest (RF) [1,2] method coupled with the nested K-fold 

cross validation approach. 

 

2. Materials and Methods 

 

The distribution coefficients employed in this study 

were taken from the JAEA-SDB [3]. Three types of 

bentonites (such as MX-80, SWy-2, and Kunigel V1) and 

22 kinds of radionuclides (Am, Ac, Co, Cm, Cd, Cs, Cu, 

Na, Np, Ni, Nb, U, Sr, Sn, Pb, Pa, Pu, Po, I, Tc, Th, and 

Zr) were selected for further data processing and the 

establishment of the machine learning model. The 

database for machine learning calculation included 9 

variables such as solid-liquid ratio (LS, unit: mL/g), ionic 

strength (IS, unit: mol/L), oxidation number of 

radionuclide (RX), acidity (pH), initial radionuclide 

concentration (C0, unit: mol/L), cation exchange capacity 

(CEC, unit: meq/100 g), surface area (SA, unit: m2/g), 

electronegativity (EN), and ionic radius (IR, unit: Å ). 

For the establishment of the machine learning model, 

the RF method, a supervised ensemble machine learning 

approach based on multiple decision trees and bagging, 

was employed in the present work. In the course of the 

calculation, various hyperparameters were adjusted to 

monitor the change in the coefficient of determination 

(R2) and the root mean square error (RMSE). Particularly, 

the number of decision trees (NT), the number of features 

selected to be used to divide each node (NF), and two 

different types of random seeds were selected to be 

controlled during the calculation. The random seeds 

employed to distinguish the train/test sets and internal RF 

model calculation were referred to as RS_T and RS_M, 

respectively.  

Additionally, the relative importance of input 

variables used in the calculation of the distribution 

coefficient was quantified by using the mean decrease in 

impurity (MDI) approach [4]. 

Furthermore, the nested K-fold cross validation (CV) 

method was employed to validate the normal RF model 

result owing to the presumable overfitting and bias of 

data problems expected in the normal RF model 

calculation. In the present work, the CV method with the 

double loop consisting of five inner and outer fold loops 

was utilized to provide further robustness and 

redundancy in the calculation result. 

The computational codes to establish the normal RF 

model and to perform the nested K-fold CV were taken 

from the scikit-learn software package [2]. 

 

3. Results 

 

The ranges of the hyperparameters controlled in the 

RF calculation were NT = 5 – 1000 (set in multiples of 

five intervals), NF = 2 – 9, RS_T = 0 ‒ 10, and RS_M = 

0 ‒ 10. Note that the other parameters were fixed at their 

default values. 

Figure 1 presents the range of R2 values calculated 

with two different approaches such as the normal RF 

model and the nested K-fold CV. According to the result, 

the highest R2 value among the entire R2 results was 

obtained with the normal RF model calculation. 

 
Fig. 1. The entire range of R2 values calculated with various 

RS_T by using (a) the normal RF model and (b) the nested K-

fold CV. Symbol presents the averaged R2 value at given RS_T. 
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The maximum R2 value derived with the normal RF 

model was R2 = 0.9175 at RS_T = 8, RS_M = 5, NT = 

105, and NF = 3. However, the result obtained with the 

nested K-fold CV shows a relatively low R2 value 

compared with that determined with the normal RF 

model. Nevertheless, the relative deviation of averaged 

R2 value for various RS_T and the range of R2 values 

were significantly decreased, indicating that the 

robustness and stability of the calculation model were 

dramatically enhanced. The maximum of the averaged 

R2 value determined with the nested K-fold CV was R2 

= 0.8683 at RS_T = 10. 

Figure 2 presents the comparison results between the 

experimental log Kd values with those predicted with two 

different machine learning approaches. 

  
Fig. 2. Comparisons of experimental and predicted log Kd 

values evaluated with (a) the normal RF model with the highest 

R2 value at RS_T = 8 and (b) the nested K-fold CV at the fourth 

outer fold loop at RS_T = 10 

 

Because the nested K-fold CV method performs an 

additional validation process to avoid the overfitting of 

data, the R2 value derived from the nested K-fold CV is 

somewhat lower than that obtained with the normal RF 

model. Still, according to the considerable robustness 

and stability of the model possibly expected from the 

nested K-fold CV method, it can be judged that the 

usefulness of the result calculated with the nested K-fold 

CV is sufficient even though the R2 value is slightly low.  

Table 1 shows the relative importance of the input 

variables employed in the present work determined by 

using the MDI approach and the nested K-fold CV. 

 
Table 1: Relative importance of input variables 

Variables Relative importance (%) 

pH 32.8 

C0* 14.3 

IS 11.4 

IR 10.4 

LS* 10.2 

EN 9.8 

RX 7.3 

SA 2.4 

CEC 1.4 

*log-scaled value was used in this study 

Among 9 input variables, the pH contributed the 

largest influence on the Kd value prediction while the 

CEC and SA provided remarkably low influences. The 

tendency towards low importance of the CEC and SA is 

caused apparently by small divergences in the mineral 

properties since only types of bentonites such as MX-80, 

SWy-2, and Kunigel V1 were considered in this study.  

 

4. Conclusions 

 

The computational prediction model for Kd was 

constructed by adopting the machine-learning based RF 

model together with the JAEA-SDB. The model 

established in the present work enables the reliable 

estimation of Kd value under arbitrarily given condition. 

Although the nested K-fold CV provided somewhat 

lower R2 value than that produced by the normal RF 

model, the nested K-fold CV was assessed to be an 

advisable way to avoid presumable overfitting and bias 

problems. Furthermore, the MDI approach suggested 

that the Kd is highly influenced by the pH and initial 

radionuclide concentration. 

According to the result obtained in this study, the 

normal RF model and the nested K-fold CV approach 

were assessed to be a useful method for the reliable 

prediction of Kd under arbitrary conditions for various 

radionuclides considered in the deep-geologic disposal 

facility. 
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