

KNS 2022 Autumn Conference

Selection of Reference PWR Spent Nuclear Fuel and Source Term Calculation for Deep Geological Disposal System

Kyu Jung Choi and Ser Gi Hong*

Corresponding Author: hongsergi@hanyang.ac.kr

2022. 10. 21.

This work was supported by the iKSNF AND KETEP grant funded by the MOTIE (No. 2021040101003C)

Department of Nuclear Engineering, Hanyang University Computational Transport & Reactor Physics Laboratory

- 1. Introduction
- 2. Design Basis Reference SNFs
- 3. Modeling and Computational Codes
- 4. Results
- 5. Conclusion

1. Introduction

showing cracked fuel pellet with grain boundaries and gaps ¹⁾

To evaluate the safety of deep geological disposal, it is necessary;

- to establish a design basis reference SNFs that considers the characteristics of the SNFs generated in domestic nuclear power plants,
- to evaluate the source term of design basis reference SNFs for disposal canister safety (decay heat, criticality, radiation shielding, etc.), and
- to quantitatively evaluate the leakage or release characteristics of nuclide isotopes in SNFs for long-term safety evaluation.
- It was possible to refer to the Korea PWR SNFs database (up to December 2021) from Korea Hydro & Nuclear Power (KHNP) through the Korea Radioactive Waste Agency (KORAD).
- Using the SCALE 6.2.4/TRITON and ORIGEN-ARP computer code, the source term evaluation was performed on the design basis reference SNF.
- POSIVA 2013-01, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto, 2013
- SKB TR-99-06, Deep repository for spent nuclear fuel SR 97 Post-closure safety, 1999

2. Design Basis Reference SNFs (1/5)

- Databases of the 20,970 PWR SNFs generated from 1979 to 2021 was provided by KHNP.
- □ For each assembly, the database contains:
 - initial uranium mass (grams),
 - initial enrichment (wt% ²³⁵U),
 - discharge burnup (MWd/MTU),
 - specific power (MW/MTU),
 - effective full power days (EFPDs),
 - discharged date (dd/mm/yyyy),
 - assembly lattice type.
- \clubsuit The initial enrichment is the value of the normal pins.
- * The initial uranium mass is the sum of the normal pins, zoned pins, and burnable poison pins.
- The burnup is the final burnup after the assembly has been discharged from the reactor.

2. Design Basis Reference SNFs (2/5)

Distribution of SNFs properties (1/3) Cumulative percentage (%) Number of assemblies Number of assemblies Cumulative percentage Discharged Burnup (MWd/kg) Discharge year Fig. 4. Number of assemblies as a function of discharged burnup Fig. 3. Annual number of fuel assemblies discharged

1	able	Ι.	Number	of	SNFs	bv	burnup	range
1	abio	•••	110111001	<u> </u>	0.1.0	~ ,	Sannap	iaiigo

(x-axis bin: 1 MWd/kg)

Burnup range (MWd/kg)	Number of SNFs	Percentage (%)
Over $5-15$ or less	1,007	4.80
Over $15 - 25$ or less	737	3.51
Over $25 - 35$ or less	3,271	15.60
Over $35 - 45$ or less	9,811	46.76
Over $45 - 55$ or less	6,071	28.95
Over $55 - 65$ or less	73	0.35

Average burnup: 40 MWd/kg

Median burnup: 42 MWd/kg

2. Design Basis Reference SNFs (3/5)

Distribution of SNFs properties (2/3)5.0 5%~95% Min~Max 4.5 Median Enrichment 4.0 1.0 0.5 0.0 1979 1983 1987 1991 2003 2007 2011 2015 2019 1995 1999 Discharge year Fig. 5. Evolution of the initial enrichment as a function of fuel discharge year for SNFs

year for SNFs

Table II. Enrichment and burnup	p by discharge year grou	up
---------------------------------	--------------------------	----

	Discharge	charge Initial enrichment (wt% ²³⁵ U)					Burnup (MWd/MTU) #					
year		Min.	Median	Max.	Under 5%	Upper 5%	Min.	Median	Max.	Under 5%	Upper 5%	20,969
PWR-1	1979-1996	[1.29	3.20	3.74]	[1.60	3.66]	[9,563	32,458	47,279]	[12,961	41,380]	3,921 (19%)
PWR-2	1997-2008	[1.27	3.89	4.41]	[2.31	4.27]	[10,697	41,908	56,859]	[23,892	49,511]	7,203 (34%)
PWR-3	2009-2021	[1.42	4.17	4.48]	[2.64	4.38]	[9,609	44,676	56,385]	[18,500	52,885]	9,845 (47%)

- Burnup and initial enrichment have a correlation.
- The median enrichment and burnup in general increases over time.
- The development of second-generation fuels (e.g., PLUS7, ACE7) with the increased allowed burnup.
 - Allowable burnup of PLUS7: \leq 55 MWd/kg
 - Acceptable burnup of ACE7: \geq 55 MWd/kg

2. Design Basis Reference SNFs (4/5)

 \Box Distribution of SNFs properties (3/3)

- WH 17×17 and CE 16×16 type assemblies compose ~86% of the total SNFs.
- The maximum initial uranium mass of WH 17×17 and CE 16×16 are 468 kg and 435 kg, respectively.
- The initial uranium mass and burnup are important parameters for evaluating radioactivity, decay heat, criticality, radiation shielding safety, and inventory of SNFs.

2. Design Basis Reference SNFs (5/5)

Selection of design basis reference SNFs

• A scenario was assumed in which 70 % of the total capacity of the deep geological disposal system was to be disposed of low burnup SNFs, and the remaining 30 % of the SNFs with high burnup.

Table III. Summary of design basis reference SNFs

Design basis reference SNFs	Lattice type	Burnup [MWd/MTU]	Enrichment [wt% U ²³⁵]	Uranium mass [kg]	Specific power [MW/MTU]	Irradiation time [EFPDs]
REF-PLUS7-LU	16×16	45,000	4.5	436	40	1,125
REF-PLUS7-HU	16×16	55,000	4.5	436	40	1,375
REF-ACE7-LU	17×17	45,000	4.5	468	40	1,125
REF-ACE7-HU	17×17	55,000	4.5	468	40	1,375

3. Modeling and Computational Code (1/2)

u Fuel assembly modeling

Fig. 12. Configuration of fuel assembly (left: PLUS7, right: ACE7)

Table IV.	PLUS7	and ACE7	design	parameters

Design parameter	PLUS7	ACE7
Fuel rod array	16×16	17×17
Number of fuel rods	236	264
Active fuel length	381	365.76
Number of guide tube	4	24
Number of instrumentation tube	1	1
Fuel assembly length [cm]	452.8	406.3
Fuel assembly pitch [cm]	20.7772	21.5040
Fuel rod length [cm]	409.4	388.1
Pin pitch [cm]	1.285	1.260
Fuel diameter [cm]	0.8192	0.8192
Cladding material	ZIRLO	ZIRLO
Cladding I.D. [cm]	0.8357	0.8357
Cladding O.D. [cm]	0.95	0.95
Guide tube material	ZIRLO	ZIRLO
Guide tube I.D. [cm]	2.286	1.008
Guide tube O.D. [cm]	2.4892	1.224

3. Modeling and Computational Code (2/2)

SCALE 6.2.4/TRITON and ORIGEN-ARP

Fig. 13. The TRITON/ORIGEN procedure used in this work to generate the design basis reference SNFs calculation ¹⁾

4. Results (1/5)

Activity, decay heat, gamma heat, and plutonium contents

Fig. 14. (a) Activity, (b) Decay heat, (c) Gamma heat, and (d) Pu mass as a function of cooling time for each design basis reference SNFs

4. Results (2/5)

Estimation of cooling time to satisfy the decay heat criteria in the disposal canister (1/2)

Sweden KBS-3 Disposal System (TR-10-13) - Requirements related to repository design and long-term safety

Requirement on handling: The fuel assemblies to be encapsulated in any single canister shall be selected with respect to burnup and age so that the total decay power in the canister will not result in temperatures exceeding the maximum allowed in the buffer.

Criterion: The total decay power in each canister must not exceed 1,700 W

POSIVA 2005-02 – Disposal Canister for Spent Nuclear Fuel – Design Report

The maximum canister decay power is limited in reference case to 1,700 W for the BWR canister in safety analysis. This leads to comparable power of 1,370 W for VVER 440 canister and of **1,830 W power for EPR** canister

Fig. 15. Left: Canister geometries, Right: Canister overpack is made out of copper and the insert is cast iron ¹⁾

- 1) POSIVA 2013-01, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto, 2013
- 2) POSIVA 2005-02, Disposal Canister for Spent Nuclear Fuel Design Report, 2005

Fig. 16. The section of the insert for EPR fuel assemblies ²⁾

]

Estimation of cooling time to satisfy the decay heat criteria in the disposal canister (2/2)

Design basis reference SNFs	Median uranium mass (grams)	Canister uranium mass (MTU)	
REF-PLUS7-LU	430,834	1.72334	
REF-PLUS7-HU	431,505	1.72602	
REF-ACE7-LU	461,992	1.84797	
REF-ACE7-HU	464,196	1.85678	

Table V. Uranium mass per canister

Table VI. Decay heat per canister as a function of cooling time

Cooling time (years)	REF- PLUS7-LU	REF- PLUS7-HU	REF- ACE7-LU	REF- ACE7-HU	10,000 9,000
3	7,703	9,765	8,210	10,432	<u>.</u> 8000
5	4,559	6,021	4,853	6,422	list of the state
10	2,862	3,820	3,044	4,068	000,7 g
20	2,198	2,885	2,336	3,070	St 6 000
30	1,866	2,422	1,981	2,574	A A
40	1,626	2,093	1,725	2,222	<u>5,000</u>
50	1,380	1,760	1,461	1,867	4 000 ±
56	1,258	1,598	1,331	1,693	a a
64	1,140	1,441	1,205	1,525	<u>8</u> 3,000
72	1,027	1,292	1,084	1,366	2 000
81	920	1,153	971	1,218	2,000
92	823	1,026	867	1,082	1,000
104	734	912	773	960	. o 🕂

4. Results (4/5)

Phases D) The selection of the most safety-relevant radionuclides for the release, retention, and transport calculations (41 radionuclides were finally screened).

STUK's regulatory guidelines YVL D.5 (STUCK 2011a, paragraph 313). The radionuclides mentioned in YVL D.5 are the following:

- Long-lived alpha-emitting Ra, Th, Pa, Pu, Am, and Cm isotopes,
- Long-lived uranium isotopes,
- C-14, Cl-36, Ni-59, Se-79, Zr-93, Nb-94, Tc-99, Pd-107, I-129, Sn-126, Cs-135, Np-237

Ag-108m,	Am-241,	Am-243,	Be-10,	C-14,	Cl-36,	Cm-245,	Cm-246,	Cs-135,	Cs-137,
I-129,	Mo-93,	Nb-91,	Nb-92,	Nb-93m,	Nb-94,	Ni-59,	Ni-63,	Np-237,	Pa-231,
Pd-107,	Pu-238,	Pu-239,	Pu-240,	Pu-241,	Pu-242,	Se-79,	Sm-151,	Sn-126,	Sr-90,
Ra-226,	Tc-99,	Th-229,	Th-230,	Th-232,	U-233,	U-234,	U-235,	U-236,	Pu-238,
Zr-93.									

*Blue nuclides: The instant release fractions (IRF)

Table VII. Fuel parameters are taken into account in the reference inventory (based on Anttila 2005, Appendix 2)

Parameter	Values in Anttila (2005)
Initial enrichment (wt%)	3.8, 4.2
Discharge burnup (MWd/kg)	45, 50, 60

* POSIVA 2013-01, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto, Section 7.3, 2013

* KAERI/AR-1325/2021, 처분환경에서 사용후핵연료 중 장반감기 방사성 핵종의 순간 누출 분율에 관한 기술현황 분석, 2021

* SKB 2010f, Data report for the safety assessment SR-Site, TR-10-52

* Nykyri, et. al., Experimental and modeling investigations of the biogeochemistry of gas production from low and intermediate level radioactive waste, Applied Geochemistry, Vol. 23, no. 6, p. 1383-1418

4. Results (5/5)

Table VIII. The inventory (GBq/MTU) of the potentially safety-relevant radionuclides in one metric ton uranium (MTU) as a function of cooling time

Radionuclide	Reference 30 years cooling	30 years cooling	40 years cooling	44 years cooling	50 years cooling	56 years cooling	64 years cooling	72 years cooling
Ag-108m	2.50E+04	6.61E-02	6.52.E-02	6.47.E-02	6.41.E-02	6.34.E-02	6.27.E-02	6.19.E-02
Am-241	1.93E+05	2.10E+05	2.27.E+05	2.34.E+05	2.40.E+05	2.44.E+05	2.46.E+05	2.47.E+05
Am-243	3.42E+03	2.24E+03	2.24.E+03	2.24.E+03	2.24.E+03	2.24.E+03	2.24.E+03	2.24.E+03
Be-10	1.26E-02	9.92E-05	9.92.E-05	9.92.E-05	9.92.E-05	9.92.E-05	9.92.E-05	9.92.E-05
C-14	1.61E+02	5.54E+00	5.53.E+00	5.53.E+00	5.52.E+00	5.52.E+00	5.52.E+00	5.51.E+00
Cl-36	2.63E+00	1.64E-73	1.64.E-73	1.64.E-73	1.64.E-73	1.64.E-73	1.64.E-73	1.64.E-73
Cm-245	1.03E+02	8.75E+01	8.74.E+01	8.74.E+01	8.73.E+01	8.73.E+01	8.72.E+01	8.72.E+01
Cm-246	3.57E+01	2.17E+01	2.17.E+01	2.17.E+01	2.17.E+01	2.17.E+01	2.16.E+01	2.16.E+01
Cs-135	3.43E+01	2.85E+01	2.85.E+01	2.85.E+01	2.85.E+01	2.85.E+01	2.85.E+01	2.85.E+01
Cs-137	3.46E+06	3.16E+06	2.60.E+06	2.31.E+06	2.02.E+06	1.74.E+06	1.47.E+06	1.21.E+06
I-129	1.91E+00	1.68E+00	1.68.E+00	1.68.E+00	1.68.E+00	1.68.E+00	1.68.E+00	1.68.E+00
Mo-93	2.26E+01	1.74E-06	1.73.E-06	1.73.E-06	1.73.E-06	1.73.E-06	1.73.E-06	1.72.E-06
Nb-91	2.86E-04	1.18E-06	1.17.E-06	1.17.E-06	1.16.E-06	1.15.E-06	1.14.E-06	1.13.E-06
Nb-92	2.35E-04	2.05E-09	2.05.E-09	2.05.E-09	2.05.E-09	2.05.E-09	2.05.E-09	2.05.E-09
Nb-93m	5.08E+03	7.82E+01	8.59.E+01	8.94.E+01	9.25.E+01	9.52.E+01	9.74.E+01	9.92.E+01
Nb-94	7.52E+02	1.60E-02	1.60.E-02	1.60.E-02	1.60.E-02	1.60.E-02	1.60.E-02	1.60.E-02
Ni-59	2.21E+02	1.84E-167	1.84.E-167	1.84.E-167	1.84.E-167	1.84.E-167	1.84.E-167	1.84.E-167
Ni-63	2.47E+04	2.33E-165	2.19.E-165	2.12.E-165	2.04.E-165	1.95.E-165	1.85.E-165	1.75.E-165
Np-237	2.37E+01	2.31E+01	2.37.E+01	2.41.E+01	2.45.E+01	2.50.E+01	2.56.E+01	2.63.E+01
Pa-231	1.39E-03	4.36E-04	5.44.E-04	6.09.E-04	6.82.E-04	7.65.E-04	8.59.E-04	9.64.E-04
Pd-107	9.72E+00	7.43E+00	7.43.E+00	7.43.E+00	7.43.E+00	7.43.E+00	7.43.E+00	7.43.E+00
Pu-238	2.64E+05	2.42E+05	2.27.E+05	2.18.E+05	2.08.E+05	1.98.E+05	1.86.E+05	1.75.E+05
Pu-239	1.42E+04	1.47E+04	1.47.E+04	1.47.E+04	1.47.E+04	1.47.E+04	1.47.E+04	1.47.E+04
Pu-240	3.12E+04	1.96E+04	1.97.E+04	1.97.E+04	1.98.E+04	1.98.E+04	1.98.E+04	1.98.E+04
Pu-241	1.75E+06	1.83E+06	1.21.E+06	9.46.E+05	7.15.E+05	5.21.E+05	3.65.E+05	2.43.E+05
Pu-242	2.17E+02	1.57E+02	1.57.E+02	1.57.E+02	1.57.E+02	1.57.E+02	1.57.E+02	1.57.E+02
Ra-226		1.83E-05	3.63.E-05	5.12.E-05	7.23.E-05	1.02.E-04	1.44.E-04	2.03.E-04
Se-79	4.67E+00	4.42E+00	4.42.E+00	4.42.E+00	4.42.E+00	4.42.E+00	4.42.E+00	4.42.E+00
Sm-151	1.74E+04	1.36E+04	1.28.E+04	1.23.E+04	1.17.E+04	1.12.E+04	1.06.E+04	9.90.E+03
Sn-126	3.92E+01	1.56E+01	1.56.E+01	1.56.E+01	1.56.E+01	1.56.E+01	1.56.E+01	1.56.E+01
Sr-90	2.23E+06	2.06E+06	1.68.E+06	1.48.E+06	1.29.E+06	1.10.E+06	9.24.E+05	7.56.E+05
Tc-99	8.48E+02	7.82E+02	7.82.E+02	7.82.E+02	7.82.E+02	7.82.E+02	7.82.E+02	7.82.E+02
Th-229		1.37E-05	1.67.E-05	1.87.E-05	2.14.E-05	2.48.E-05	2.92.E-05	3.49.E-05
Th-230	1.32E-02	3.86E-03	6.04.E-03	7.56.E-03	9.44.E-03	1.18.E-02	1.47.E-02	1.83.E-02
Th-232	2.06-E08	4.66E-08	5.26.E-08	5.63.E-08	6.04.E-08	6.50.E-08	7.03.E-08	7.62.E-08
U-233	3.86E-03	3.21E-03	4.08.E-03	4.61.E-03	5.22.E-03	5.92.E-03	6.74.E-03	7.68.E-03
U-234	5.53E+01	2.50E+01	3.07.E+01	3.39.E+01	3.73.E+01	4.11.E+01	4.51.E+01	4.93.E+01
U-235	8.15E-01	6.00E-01	6.00.E-01	6.00.E-01	6.00.E-01	6.00.E-01	6.01.E-01	6.01.E-01
U-236	1.46E+01	1.44E+01	1.44.E+01	1.44.E+01	1.44.E+01	1.44.E+01	1.45.E+01	1.45.E+01
U-238	1.17E+01	1.14E+01	1.14.E+01	1.14.E+01	1.14.E+01	1.14.E+01	1.14.E+01	1.14.E+01
Zr-93	1.27E+02	1.06E+02	1.06.E+02	1.06.E+02	1.06.E+02	1.06.E+02	1.06.E+02	1.06.E+02

5. Conclusion

- In order to utilize the deep geological disposal system safety case, the domestic PWR spent nuclear fuels database was analyzed and the design basis reference spent nuclear fuels were selected.
- Also, the source terms and characteristics of the spent nuclear fuels for the cooling time were analyzed.
- □ For each design basis spent nuclear fuels, the ORIGEN and TRITON codes were used to evaluate the decay heat, which is essential for the safety evaluation of the deep geological disposal system, and the neutron/gamma emission spectra required for radiation shielding analysis.
- From viewpoint of decay heat, the design basis spent nuclear fuels could be disposed of in a disposal canister after 50 years of cooling time.
- In the future, more detailed evaluations of radionuclides are required for the source terms considering the instant release and UO_2 matrix dissolution.

Thank you for listening

Department of Nuclear Engineering, Hanyang University Computational Transport & Reactor Physics Laboratory

