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Abstract

The prototype generation IV sodium—cooled fast reactor (PGSFR) which is being developed by Korea Atomic Energy Research Institute (KAERI) is composed of several high—slenderness ratio

components. In general, the frequency characteristics of the seismic load that may occur have a high response in the low frequency range. Since the frequency range of these seismic loads is
likely to be In the natural frequency range of high—slenderness ratio components of PGSFR, there is a possibility that resonance may occur. In this study, high—slenderness ratio components of

PGSFR were selected and the dynamic characteristics were analyzed through modal analysis and resonance possibility check.

Introduction Dynamic Characteristics Analysis
= The main components of the sodium-cooled fast reactor (SFR) assembly should be » Modal Analysis
designed to maintain structural lntegrlty against horizontal and vertical seismic loads. - When performing modal ana|y3i3, sufficient natural vibration modes and modal
= The frequency range of these seismic loads is likely to be in the natural frequency range parameters were extracted to include the excitation frequency range (0-100 Hz) of the
of main components with high—slenderness ratio (HSR) installed in SFR. floor response spectrum (FRS).
= Thus, there Is a possiblility of resonance between the frequency of the seismic load and - The major natural frequencies and modes for each direction derived from modal analysis
the natural frequencies of the structures. of the PHTS pump, IHX, and DHX are shown in Figure 4.
= Therefore, It Is necessary to identify structures that are expected to be vulnerable to I e —
seismic loads through dynamic characteristics analysis of major HSR components. g R s e
= In this study, HSR components were selected from the prototype generation—1V sodium- = L F
cooled fast reactor (PGSFR), and the dynamic characteristics of the selected HSR i = =0 s NE
components were analyzed through modal analysis. B T [
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the natural frequency of the selected high—slenderness ratio components was analyzed. (a) PHTS pump (b) IHX (c) DHX
Fig. 4 Major mode shape (PHTS pump, IHX, and DHX)
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I |gh-slenderness Ratio Compone 1T = Resonance Possibility Analysis
and Ana|y5|s Model - The seismic loads are applied to the HSR components as shown in Figure 5.

- The possibility of resonance was analyzed by comparing the FRS acting on supports of

» High-slenderness Ratio Components Selection | | |
HSR components with the natural frequencies of those components (Figure 6~8) [3].

- In case of HSR structures like primary heat transfer system (PHTS) pum
Het P 4 Y ( ) pump, - The possibility of resonance with the natural frequency of the PHTS pump is expected to

intermediate heat exchanger (IHX), and decay heat exchanger (DHX) as shown in be high in the critical frequency range of support 2—x direction (4.3 Hz to 6.0 Hz) and

Figure1, there is a high possibility of structural weakness because the seismic load support 2-z direction (4.4 Hz to 6.3 Hz).
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each other, which can cause resonance.
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- The value representing the level of slenderness of the structure is the slenderness

/(e

|

ratio (SR) A, as following [1].
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I=section moment about the centroid axis, A=section area) Fig. 5 Seismic load direction and location Fig. 6 Comparison of the natural frequency
- As shown in Table 1, the SR of PHTS pump, IHX, and DHX all showed a high value acting on each component and FRS of the PHTS pump
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Fig. 1 Selected HSR components (PHTS pump, IHX, and DHX)
Table. 1 The SR of PHTS pump, IHX, and DHX Conclusions
PHTS pump IHX DHX | |
L [m] 16.47 18 57 12 16 * |n this study, the PHTS pump, IHX, and DHX, which are expected to be vulnerable to
r [m] 0.180 0.367 0.179 horizontal seismic load, among the major components constituting the PGSFR reactor
A 103.17 44 .82 68.05

: assembly were selected based on the slenderness ratio.
= Analysis Model | | o
» Modal analysis was performed to analyze the dynamic characteristics of the components

- The finite element analysis models of PHTS pump, IHX, and DHX for analyzing | |
selected as high—slenderness ratio structures, and modal parameters such as natural

dynamic characteristics and boundary conditions are shown in Figure 2 and 3 [2]. L | |
frequency and participation factor obtained as a result of the modal analysis were

calculated.

* |n order to evaluate the seismic risk of each component, the possibility of resonance

between the seismic load frequency acting on each component and the natural frequency

of each component was analyzed.

= As a result of the analysis, in the case of the PHTS pump, it was expected that the critical

(a) PHTS pump (a) IHX (2) DHX frequency range of the horizontal seismic load acting on support 2 and the natural

Fig. 2 Finite el t analysi dels (PHTS IHX, and DHX
ig. 2 Finite element analysis models ( PUmp, A, an | frequency of the PHTS pump would be highly likely to resonate.
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