CFD-Aided Design of a Small Modular SFR

Churl Yoon*(cyoon@kaeri.re.kr), Huee-Youl Ye, and Jae Hyuk Eoh

Korea Atomic Energy Research Institute

Purposes and Ultimate Goal

Purposes : To analyze conjugate heat transfer phenomena over the SALUS PHTS (Primary Heat Transfer System) being directly contact with HAA(Head Access Area) and RVCS (Reactor Vault **Cooling System) by using CFD(Computational Fluid Dynamics) technology** Ultimate Goal : Validation and Improvement of the proposed SALUS design

SALUS Reactor System

SALUS (Small, Advanced, Long-cycled and Ultimate **Safe SFR) reactor:**

CFD Analysis Methodology

Part Geometry: generated by SALOME <u>Mesh</u>: Unstructured polyhedral meshes with prism layers in fluid regions - Total cell number = ~ 32,000,000

- A pool-type sodium-cooled SFR (Sodium-cooled Fast Reactor) generating 100MWe with a long refueling period of ~20 years.
- Under design-development in KAERI

HAA (Head Access Area):

- Cylindrical compartment **covering Reactor Head**
- Diameter = 14.56m, Height = 10.75m-
- 4 air inlets on upper side wall & 4 outlets on lower side wall **RVCS (Reactor Vault Cooling System):**
- ~2m-thick concrete container
- Top surface of RVCS supports **Containment Vessel and Reactor** Support System
- Atmospheric air circulates and cools the outer surface of containment vessel

Insulator Steel

Fig. SALUS RVCS

Concrete

Containment Vesse

HAA

PHTS pump internal

Physics Models: Shear Stress **Transport (SST) turbulence** model and S2S Gray Thermal radiation model were applied in every gas regions.

Table. Outermost boundary conditions			
Location	Boundary	Content	Value
HAA Air	Top wall	Temp. [°C]	40
	Side wall	Adiabatic	
RVCS	Side wall	Temp. [°C]	20
concrete	Bottom wall	Adiabatic	
RVCS air	Bottom wall	Adiabatic	

Table. Major analytic conditions Value Location Content Total volumetric flow rate [m³/s] 5.72 HAA Air Temperature [°C] 20 Total mass flow rate [kg/s] 9.92 **RVCS** Air Temperature [°C] 40 PHTS Pump Total mass flow rate [kg/s] 1365.63 357.8 Temperature [°C] Sodium

UIS side stee

Simplification of Upper Shielding (Heat) Structure

Upper Shielding Structure (USHS):

- To shield direct

KAERI

heating from sodium pool to Reactor Head **bottom surface**

- Layers of 21 1cm-thick SUS316H plates spacing 2cm apart from each others

Substitute USHS with a Simple Block Part:

- Advantage: Reduce computing cost & instability
- Disadvantages: Require SET (Separate Effect Test) to get

Steady-State Simulation Results

Outlet

Inlet

At PHTS pump cut:

Design Parameters & Future Works

for RV temperature

- required for MVCS

System) design

한국원자력연구원

Korea Atomic Energy Research Institute

Air Flows in HAA:

Cold inlet air from 4 inlets collide with each others and go down to the reactor head surface. **Regional temperatures above the reactor head center** are relatively low than other regions.

Future Works:

limits

- SALUS PHTS CFD analysis including MVCS design - Sensitivity study of MVCS flow
 - rates on RV temp. profiles
- Study on IHX shell-side outlet configuration change
- Study on DHX natural circulation flows

KNS Autumn Meeting, Changwon, Oct. 20-21, 2022