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1. Introduction 

 

Liquid lead (Pb) or lead-bismuth eutectic (LBE) has 

promising properties to be applied in fast reactor design 

such as low neutron absorption, wide liquid temperature 

range and high thermal conductivity. A pending 

engineering issue in the lead-cooled fast reactors (LFRs) 

including the accelerator driven subcritical reactor 

(ADSR) is corrosion of structural materials. Iron (Fe) 

based steels such as ferritic/martensitic (F/M) steel and 

austenitic stainless steel (AuSS) have been considered as 

the structural materials. Steel corrosion is especially 

severe at high temperatures as the solubility of the steel 

component increases with temperature. Furthermore, 

above 800 K, the oxide film acting as the passivation 

layer was observed to be permeable [1]. For example, in 

T91 steel, 1250 hours of exposure to LBE resulted in 

corrosion of Fe matrix even though the impaired oxide 

film remained [2]. 

For better corrosion control, understanding 

intermetallic corrosion mechanisms is important; 

however, it is yet to be achieved even between the most 

basic elements. Moreover, the quantitative data on 

relevant properties such as solubility still need to be 

refined. Density functional theory (DFT) is an elaborate 

electronic structure approach in the field of 

computational materials science and engineering and is 

potentially applicable to materials corrosion studies. 

However, its high computational cost makes large-scale 

and long-time simulations difficult, and thus the 

applicability to complex systems and phenomena is 

limited. 

Recently, machine learning (ML) potential has been 

emerging as an alternative to imitate the DFT while 

benefiting feasible speed of molecular dynamics (MD). 

Quaranta et al. captured the structure and dynamics of the 

interface of liquid water and zinc-oxide employing a 

neural network potential (NNP) with near DFT accuracy 

at a fraction of the cost [3]. 

In this study, a moment tensor potential (MTP) is 

developed as it is well balanced in both accuracy and 

computational efficiency [4]. Herein, the performance of 

the MTP is validated, and the corrosion phenomenon 

observed in the MD simulation is discussed preliminarily. 

 

2. Methods 

 

In this section, the methodology to construct the MTP 

using the Machine Learning Interatomic Potential (MLIP) 

package [4] is described. 

 

2.1 Construction of Moment Tensor Potential 

 

The potential energy of an atom is expressed as a 

linear combination of a set of basis functions represented 

to be the descriptor to capture the local atomic 

environment, and the coefficients are the fitting 

parameters. The basis functions are comprised of radial 

and angular parts. The radial part is composed of 

polynomials operant within [𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥]  while the 

angular part is composed of moment tensors. The so-

called level of moments is introduced as a measure of the 

size of basis. MTP includes all basis functions whose 

level is less than or equal to the specified maximum level 

𝑙𝑒𝑣𝑚𝑎𝑥 . 

Let the training data of total 𝐾 configurations contain 

the DFT data of energy 𝐸𝑑𝑓𝑡(𝑐𝑓𝑔𝑘), force for 𝑖th atom 

𝑓𝑖
𝑑𝑓𝑡(𝑐𝑓𝑔𝑘)  and stress 𝜎𝑑𝑓𝑡(𝑐𝑓𝑔𝑘)  for 𝑘 th 

configuration 𝑐𝑓𝑔𝑘 . Then, the parameters 𝜃, which is 

composed of coefficients of radial and angular basis 

functions, are searched to minimize the loss function as 

follows 

 

 

∑ [𝑤𝑒 (𝐸𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃) − 𝐸𝑑𝑓𝑡(𝑐𝑓𝑔𝑘))
2

+𝐾
𝑘=1

𝑤𝑓 ∑ |𝑓𝑖
𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃) − 𝑓𝑖

𝑑𝑓𝑡(𝑐𝑓𝑔𝑘)|
2𝑁𝑘

𝑖=1 +

𝑤𝑠|𝜎𝑚𝑡𝑝(𝑐𝑓𝑔𝑘; 𝜃) − 𝜎𝑑𝑓𝑡(𝑐𝑓𝑔𝑘)|
2

] → 𝑚𝑖𝑛
𝜃

 ( 1 ) 

 
where 𝑁𝑘  is the number of atoms in the 𝑘 th 

configuration, and 𝑤𝑒, 𝑤𝑓 and 𝑤𝑠 are the weights for 

energy, force and stress, respectively. To balance the 

computational burden and the accuracy, we performed 

test calculations changing hyperparameters such as 

𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 and 𝑙𝑒𝑣𝑚𝑎𝑥 . It was confirmed the training 

root mean square error (RMSE) in energy fitting 

converges to about 6 meV/atom if 𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥  and 

𝑙𝑒𝑣𝑚𝑎𝑥  are 1.5 Å , 6.0 Å  and 16, respectively. 

 

2.2 Generation of Training Data 

 

All the training data were generated from first 

principles (FP) calculations based on DFT using the 

Vienna Ab initio Simulation Package (VASP) [5]. To 

estimate the exchange-correlation (XC) energy, the 

regularized-restored strongly constrained and 

appropriately normed (r2SCAN) functional [6] was 

employed as it is in balance to describe both of Fe and 

Pb. The effect of core electrons was described by the 

projector augmented wave (PAW) method, and the 

valence electrons were represented by a plane-wave 

basis with an energy cutoff of 470 eV. The band energy 
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was calculated using the first order Methfessel-Paxton 

method [7] of a 0.2 eV smearing width over a 

Monkhorst-Pack grid [8] with a spacing of 0.025 Å -1. 

MTP was constructed by combining supervised and 

active learning. First, for the supervised learning, the 

initial training data were collected from static calculation, 

geometry optimization and FP-MD on bulk, surface and 

interface systems at sparse temperatures of 500 K, 1000 

K and 2000 K. The configurations bring together a 

variety of phases, densities and shapes, and some of 

which contain point defects such as vacancy, interstitial 

and substitutional. The surface and interface were 

modeled on the basis of three low index surfaces of bcc-

Fe (i.e., (100)/(110)/(111)). Afterward, the training data 

corresponding to (100) bcc-Fe and liquid Pb interface 

were efficiently expanded under the active learning 

scheme. 

The active learning implemented in the MLIP package 

uses a query strategy in which the MTP itself picks out 

additional training data to learn on-the-fly during MD 

simulations [4]. The so-called extrapolation grade which 

is a measure of the novelty of a given configuration 

compared to the ones already in the training data is 

evaluated for every configuration. It postulates that a 

good training data corresponds to the one with which the 

determinant of the linear system to be solved is 

maximum. Then, only the configurations of which 

extrapolation grades satisfy the specified criteria are the 

candidates to be the training data. Among those 

extrapolative configurations, non-repetitive and 

representative configurations are finally selected. The 

selected configurations are processed by the DFT and 

appended to the training data. This scheme was repeated 

until any local atomic environments that appeared during 

the interface simulation were interpolated or mildly 

extrapolated from the training data of MTP. 

 

2.3 Correction via Two-Body Potential 

 

The accuracy of DFT calculation depends on the XC 

functional used. For mixtures, it is desirable to choose a 

one that can achieve sufficient accuracy for all 

compounds and states that may occur. After comparing 

several functionals, the r2SCAN functional was selected 

because it performed the best. However, it overestimated 

the absolute value of cohesive energy of Fe 

corresponding to the energy of the reference state, 

namely α phase, relative to that of isolated gas. As 

dissolution is a process wherein Fe escapes from the 

reference state, this energy level needs to be accurately 

produced. To correct this systematic weakness, a slight 

two-body (2B) potential was added for Fe-Fe interatomic 

potential energy in the following form 

 

 𝑓2𝐵(|𝑟𝑖𝑗|) = {
𝐶1(𝐶2 − |𝑟𝑖𝑗|)

3
|𝑟𝑖𝑗|

𝐶3
|𝑟𝑖𝑗| < 𝑅𝑚𝑎𝑥

0 |𝑟𝑖𝑗| ≥ 𝑅𝑚𝑎𝑥

( 2 ) 

 

where 𝑟𝑖𝑗  is the position of the neighboring 𝑗th atom 

relative to the 𝑖th atom, and 𝐶1, 𝐶2 and 𝐶3 were set to 

0.00056, 6 and 0.5, respectively. These values were 

optimized to reproduce the experimental cohesive energy 

of Fe. 

 

3. Results and Discussions 

 

Hereafter, all the static or MD simulations with the 

MTP were performed using the Large-scale Atomic 

Molecular Massively Parallel Simulator (LAMMPS) [9] 

which provides an interface with the MLIP package [4]. 

 

3.1 Cohesive Properties of Fe and Pb 

 

The cohesive properties of bcc-Fe and fcc-Pb 

calculated with the MTP are summarized and compared 

with experiment in Table 1 [10,11]. It is shown in Table 

1 that the MTP successfully reproduces the experimental 

cohesive energy of Fe owing to the 2B correction. In the 

case of Pb, there is an undeniable discrepancy with 

experiment. Nevertheless, we consider it acceptable as 

Pb does not form a solid phase in the conditions assumed 

in the present study. 

 
Table 1. Lattice constant (in Ǻ) and cohesive energy (in eV) 

calculated at 0 K for bcc-Fe and fcc-Pb using the MTP in 

comparison with experiment [10,11]. 

 a0 [10] E0 [11] 

Fe 
MTP 2.895 -4.28 

Exp. 2.858 -4.28 

Pb 
MTP 4.984 -2.86 

Exp. 4.920 -2.03 

 

3.2. Solution Enthalpy of Fe in Liquid Pb 

 

Since the corrosion results in the formation of solute 

Fe in liquid Pb, the solution enthalpy is an important 

quantity to be assessed. The solution enthalpy of Fe in 

liquid Pb is defined as the amount of the enthalpy needed 

for a Fe atom to dissolve in liquid Pb escaping from the 

reference state at a given temperature as 

 

 
∆𝐻𝑠𝑜𝑙 = 𝐻[𝑚 𝑃𝑏 (𝑙) + 𝐹𝑒 (𝑠𝑜𝑙𝑢𝑡𝑒)]

−𝑚 𝐻[𝑃𝑏 (𝑙)] − 𝐻[𝐹𝑒 (𝑠)]
 ( 3 ) 

 

where 𝐻[𝑚 𝑃𝑏 (𝑙) + 𝐹𝑒 (𝑠𝑜𝑙𝑢𝑡𝑒)] , 𝐻[𝑃𝑏 (𝑙)]  and 

𝐻[𝐹𝑒 (𝑠)]  are the enthalpy of liquid Pb containing a 

solute Fe atom (PbmFe1), per-atom enthalpy of liquid Pb 

and per-atom enthalpy of solid bcc-Fe, respectively. The 

experimental solution enthalpy can be derived from the 

experimental solubility as the slope in the Arrhenius plot, 

and thus assumed to be a constant independent of 

temperature. The solution enthalpy of Fe in liquid Pb was 

calculated from MD simulation with the MTP in an NPT 

ensemble for each system. The calculated results at 

intervals of 100 K from 700 K to 1400 K are plotted in 

Fig. 1 in comparison with the recommended value from 

thermodynamic assessment of some experimental data 
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[12]. Although the calculation results were in reasonable 

agreement with the recommended value, the calculations 

suggested that the solution enthalpy is temperature 

dependent. 

 

 
Figure 1. Solution enthalpy of bcc-Fe in liquid Pb calculated at 

intervals of 100 K from 700 K to 1400 K using the MTP in 

comparison with the recommended value from thermodynamic 

assessment of experimental data [12]. 

 

3.3. Molecular Dynamics Simulation on Fe-Pb Interface 

 

Finally, the corrosion phenomenon at the (100) bcc-Fe 

and liquid Pb interface was simulated by MD with the 

MTP in an NPT ensemble. Fig. 2 shows snapshots of MD 

simulations performed at 800 K and 1200 K with 

structure analysis. If we consider the interface as the 

layer where the bcc structure is destroyed, the thickness 

of the interface seemed to increase with temperature. It 

is intuitive that the more corroded bcc-Fe is, the weaker 

the bonding stability and the more disordered the 

structure becomes at the surface. 

 

  
Figure 2. Snapshots of MD simulation with the MTP on (100) 

bcc-Fe and liquid Pb interface in an NPT ensemble (a) at 800 

K and (b) at 1200 K with structure analysis. The accompanying 

figures are versions with Pb hidden to clearly show the 

interface. Blue, cyan and red spheres denote bcc-Fe, disordered 

Fe and Pb, respectively. 

 

To quantitatively estimate the corrosion behavior, the 

concentration of Fe dissolved in liquid Pb was obtained 

as a function of time by simulating the interface 

composed of 162,000 Fe atoms and 120,000 Pb atoms at 

1100 K. The result is shown in Fig. 3. Fe in contact with 

liquid Pb corroded and thus dissolved, although in small 

amounts. Thermodynamically, the concentration 

converges to a certain value, corresponding to the 

solubility at equilibrium. In Fig. 3, the concentration still 

fluctuates within a range because some of the dissolved 

Fe deposited on the surface of bcc-Fe. We plan to 

determine the corrosion rate and equilibrium solubility 

by conducting long simulations of multiples samples to 

improve statistical precision in a future study. 

 

 
Figure 3. Concentration of Fe dissolved in liquid Pb as a 

function of time from MD simulation with the MTP on (100) 

bcc-Fe and liquid Pb interface in an NPT ensemble at 1100 K. 

 

4. Conclusions 

 

As a first step to understand the microscopic corrosion 

mechanisms, an accurate and fast MTP was developed to 

simulate the corrosion interface of α-Fe and liquid Pb. 

The MTP reasonably reproduced the cohesive properties 

of Fe and Pb. The solution enthalpy of Fe in liquid Pb, 

which is a key quantity related to corrosion, was 

calculated from MD simulation with the MTP at a wide 

temperature range and was in reasonable agreement with 

the recommended experimental value. The MD 

simulation was performed with the MTP on the (100) 

bcc-Fe and liquid Pb interface at varying temperatures, 

visualizing the corroding interface. The corrosion 

damage was preliminarily analyzed through the time 

evolution of the concentration of Fe dissolved in liquid 

Pb. 

Given the overall performance and the interface 

simulation results, we expect that the present MTP can 

be used in the future to predict corrosion related 

properties such as corrosion rate and solubility and to 

study mitigation strategies. 
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