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1. Introduction 
 

The Differential die-away (DDA) analysis was 
developed as a technology to estimate the content of 
specific nuclear materials (SVM) contained in cargo or 
radioactive waste. The DDA analysis can be used for 
nuclear fuel assemblies and is one of the next generation 
safeguards initiative's spent fuel nondestructive assay 
project in the United States [1]. The DDA analysis can 
evaluate the characteristics of spent fuel assembly using 
the neutron signal produced by induced fission in a target 
nuclear material over time using a pulsed external 
neutron source. For this purpose, a pulsed neutron 
generator source is more efficient in the change of a 
neutron signal more than an isotope source. When pulsed 
neutrons are irradiated to spent fuel, the neutron signal 
rises due to induced fission, and when the source is 
turned off, the signal decreases exponentially. The DDA 
system can use this signal decrease rate to estimate the 
characteristics of the spent fuel. In addition, the reduction 
in the concentration of nuclear material reduces the 
neutron reduction rate, and so the position of the fuel rod 
defect in the nuclear fuel assembly can be found. 
 

2. Method 
 
2.1. The differential die-away analysis 
 

The DDA system consists of a 2.45 MeV pulsed 
neutron generator (NG), 5 cm thick lead shield, and 12 
3He neutron detectors. Fig. 1 shows the system layout in 
water, and the 3He detectors are wrapped in 1 cm 
polyethylene and have a 0.1 cm cadmium lining on the 
outside of the polyethylene. The count rate increases 
while neutrons are emitted from the NG. When NG stops 
emitting neutrons, the neutron count rate decreases 
exponentially, as shown in Equation (1). 

 
𝐶𝐶 = 𝐶𝐶0𝑒𝑒−𝑡𝑡/𝜏𝜏 (1) 

 
In Eq.(1), 𝐶𝐶 is the count rate at time 𝑡𝑡 after turn-off of 
NG, 𝐶𝐶0 is the neutron count rate at which the NG stops 
emitting neutrons, and τ is the die-away time. The 
neutron count rate and τ depend on the amount of specific 
nuclear materials, detection position, and so on. 

 
 

 
Fig. 1. Cross-sectional view of the DDA system 

 
Fig. 2 shows the change in the neutron count rate over 

time when the source neutron is irradiated for 200 µs to 
the CE 16x16 fresh fuel assembly comprised of 4.5wt% 
uranium fuel rods. It was simulated using the MCNP 6.2 
code. Immediately after the source is turned off, the 
neutron influence of the source is so significant that the 
characteristics of the target are not clearly revealed. After 
a time has elapsed after the source is turned off, the 
tendency to decrease neutrons in the system is evident, 
but the neutron count rate is low. Therefore, it is 
necessary to calculate the neutron reduction rate 
separately by dividing the time intervals after the source 
is turned off. 

 

 
Fig. 2. Change of the neutron count rate over time 

 
2.2. Fuel rod defect detection in assembly 

 
Since the system is symmetrical in the y-direction and 

the nuclear fuel assembly to be investigated is also 
symmetrical, the detectors in symmetrical locations 
show similar signals. However, under a situation that a 
certain nuclear fuel rod is defective, the detectors in the 
symmetrical positions would show different signals, 
which would helpthe detection of the defect position of 
the fuel rod. Also, the die-away time depends on the 
detectors (i.e., each detector will have different die-away 
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time) and a defect rod position gives different effects on 
the detectors. 

In this study, the DDA system was simulated using the 
MCNP 6.2 code [2] for 236 cases in which one fuel rod 
was omitted, as shown in Fig. 3 for a CE 16x16 fresh fuel 
assembly with 4.5 wt% enrichment. The neutron is 
generated during 0~200µs, and the (n, p) reaction that 
occurs in the 3He instrument is set to tally for 20 time 
intervals from 0 to 400µs in the detectors. The Monte 
Carlo simulations were performed such that statistical 
relative errors in the tallies are less than 1% in all time 
intervals. Afterward, the τ values were calculated using 
Equation (1) for the calculated signals in the 200-300 µs, 
220-320 µs, 240-340 µs, 260-360 µs, 280-380 µs, and 
300-400 µs time intervals for each detector. A total of 
312 features were set per a case with detector signals of 
20 time intervals and 6 τ values for 12 instruments. Since 
the position of the rod is defined as row and column, the 
machine learning techniques were selected for 
classification for each row and column. Labels were set 
for 16 in the row and 16 in the column, respectively. For 
machine learning, the scikit-learn in Phyton was used [3]. 
Five models were selected for the classification learning 
model: Gaussian Process (GP), Gradient Boost (GB), 
Quadratic Discriminant (QD), Stochastic Gradient 
Descent (SGD), and Support Vector Machine (SVM). 
These classification models were trained except for 48 
randomly selected cases out of 236 cases. Afterward, the 
trained models were used to estimate the rows and 
columns for the defect positions of 48 test cases. 

 

 
Fig. 3. The fuel rod defect cases of CE 16x16 Fuel assembly 

 
3. Result 

 
Fig. 4 shows the fuel rod defect position used for 

training and test cases.  
 

 
Fig. 4. Training cases defect position (black) and test cases 

defect position (red) 
 
Tables I and II show the results of the prediction of 

rows and columns where the rod defect is. In these tables, 
the difference of 0 means the correct prediction of row or 
column while the difference of i means that the predicted 
row or column is deviated by i rows or columns from the 
correct positions. The numbers given in these tables 
mean the numbers of the predictions having deviations 
of the differences given in the second row. For example, 
GP correctly predicted the row and column for 22 cases 
of total 48 test cases (i.e., 46.8% accuracy) and 45 cases 
(i.e., 93.7% accuracy) if we accept one row or column 
deviation. Predicting rows was relatively more accurate 
than predicting columns. This is due to the symmetry of 
the detectors. Among the classification models, SVM 
showed the most accurate results. It was predicted with 
98.9% accuracy and 91.7% for columns if we accept the 
deviations by one row or column. 

 
Table I: Prediction result of row 

Classification 
model 

Difference from true value 
0 1 2 3 4 >5 

GP 22 23 3 0 0 0 
GB 16 18 11 2 1 0 
QD 3 10 7 5 3 20 

SGD 20 19 8 1 0 0 
SVM 24 23 1 0 0 0 

 
 

Table II: Prediction result of column 
Classification 

model 
Difference from true value 

0 1 2 3 4 >5 
GP 22 20 2 0 3 1 
GB 18 24 4 1 1 0 
QD 3 7 6 13 4 15 
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SGD 21 23 2 2 0 0 
SVM 24 20 3 1 0 0 

 
The fuel rod defect positions were predicted using the 

row and column predictions and the results are shown in 
Table III. 1x1 means the exact prediction of the defect 
position while 3x3 means the correction prediction 
within a 3x3 fuel rod centered on the defect location. 

 
Table III: Prediction accuracy of fuel rod defect position 

Classification 
model 

Range of defect position 
1x1 3x3 5x5 7x7 

GP 33.3% 72.9% 91.7% 91.7% 
GB 6.25% 43.7% 79.2% 87.5% 
QD 0.00% 4.17% 10.4% 16.7% 

SGD 16.7% 54.2% 85.4% 95.8% 
SVM 25.0% 68.8% 95.8% 100% 

 
From Table III, it was shown that the Gaussian process 

(GP) predicted most of the defects close to the location 
of the defect but sometimes gave completely different 
predictions. In the case of the support vector machine 
(SVM), the prediction results were all close to the actual 
position. These two models correctly predicted the defect 
rod position with higher accuracy than 90% within 5x5 
deviation and with ~70% accuracy within 3x3 deviation. 

 
4. Conclusion 

 
This study was conducted to expand the utilization of 

the DDA equipment developed as characteristic 
evaluation equipment for spent nuclear fuel. We 
investigated whether it is possible to predict the location 
of fuel rod defects in a fresh nuclear fuel assembly using 
DDA equipment. The positions of the defective fuel rod 
were estimated using several machine learning models. 
As a result, when a support vector machine was used, the 
location of the defect could be roughly identified. 
Although it was difficult to estimate the exact location, 
the approximate location of the defect could be 
determined with high accuracy. The currently used 
nuclear fuel assembly defect inspection equipment takes 
considerable time because it inspects in units of rods. If 
the approximate location of the defect can be determined, 
the examination time can be shortened. In a future study, 
we will study whether the defect position can be 
estimated in the spent fuel assembly. In addition, we will 
study whether the accuracy of estimating the location of 
the defect can be improved. 
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