

Depletion Analysis of Spatial Self-shielding Effect for Double Heterogeneous Region Near Burnable Poison

Tae Young Han

Korea Atomic Energy Research Institute,

The Korean Nuclear Society Autumn Meeting, Changwon, Republic of Korea, October 20-21, 2022

Introduction

- Double Heterogeneity (DH) Effect for a VHTR Fuel Compact in DeCART2D
 - Option 1 : Spatial self-shielding effect is considered by Sanchez & Pomraning Method, which needs pre-generated self-shielded MG XS \checkmark library.
- Option 2 : Spatial & energy self-shielding effect is treated by Pin-based point-wise Slowing-down Method for DH (PSM-DH) in the resonance energy region.
- Effective Homogenized Cross Section Method proposed for non-resonant spatial self-shielding effect
 - ✓ T. Y. Han, H. C. Lee, Treatment of Non-resonant Spatial Self-shielding Effect of Double Heterogeneous Region, Nuclear Engineering and Technology, available online, (2022).
 - Developed based on a spherical unit cell model with explicit coated layers and a matrix layer, which is consistent MOC calculation region \checkmark with PSM-DH for the DH resonance treatment.

Purpose

• The depletion analysis of the effective homogenized cross section method is examined using VHTR mini block problem with burnable poison and the change of the spatial self-shielding effect with the depletion is investigated.

Review of Effective Homogenized Cross Section Method

Effective Homogenized Cross Section for a homogenized compact

$$\tilde{\Sigma}\phi V = \sum_{i} \Sigma_{i} \phi_{i} V_{i}$$

- *i* : sub-region index for matrix and particle layers,
- : effective homogenized total macroscopic cross section,
- ϕ : homogenized flux for a compact,
- $f_i = \frac{\Sigma}{p_i \Sigma_i} \frac{P_i}{\sum P_i}$

Self-shielding Factor for Compact

- P_i : first collision probability at sub-region *i*.
- Transmission Probability for Homogenized Compact
- Effective Cross Section for Compact $\tilde{\Sigma} \cong \frac{1}{2R_{2}} \left(1 - \frac{5}{\sqrt[3]{3}\hat{T}} + \frac{\hat{T}}{\sqrt[3]{9}} \right)$
 - $\hat{T} = \sqrt[3]{27 54T + 2\sqrt{3}\sqrt{92 243T + 243T^2}}$
- Relation of transmission probability and collision probability.

- V : volume of a compact,
- Σ_i : total macroscopic cross section at sub
 - region *i*,
- ϕ_i : flux at sub-region *i*,
- V_i : volume of sub-region *i*.

t(l) : transmission prob. in a chord, l. f(l) : prob. Density function for the chord, l.

Result and Discussion

Mini Fuel Block Problem with Burnable Poison based on MHTGR-350

	Graphite		TEMP=1200K, PF=35%						(about 370 pcm) in the initial burnup step and	
		Burnup (Days)	$ McCARD (M) (\sigma \approx 14 \text{ pcm}) $	DeCART with Hom. ¹ (H)	DeCART with Ehom. ² (E)	Diff. (H-M) (pcm)	Diff. (E-M) (pcm)	DH Effect ³		decreases with depletion.
	1.245 UCO TRISO + Graphite 1.8796	0	1.14800	1.15250	1.14755	450	-45	-374	•	• DH effect is negligible over 500 days considering
		25	1.13260	1.13659	1.13179	399	-81	-374		Difference is negligible over 500 days considering
		50	1.14043	1.14377	1.13922	333	-121	-349		the DH effect in the resonance range (about 4500
		100	1.15520	1.15808	1.15399	288	-121	-306		
		150	1.16/15	1.16997	1.16630	282	-85	-269		pcm).
		200	1.17722	1.17933	1.1/02/	251	-93	-255		
		300	1.10303	1.10714	1.10430	165	-75	-202	•	The DH effect of fuel compact near BP is
		350	1.19610	1.19763	1.19565	163	-45	-138		originated from the change of the thermal
i	Fuel Compact	400	1.20010	1.20089	1.19933	79	-77	-109		
		450	1.20250	1.20299	1.20183	49	-67	-80		utilization caused by the self-shielding effect in
	9.8726 cm	500	1.20387	1.20402	1.20324	15	-63	-54		
		625	1.20272	1.20244	1.20245	-28	-27	0		the thermal range.
		750	1.19603	1.19571	1.19626	-32	23	38		The method can accurately reflect the DH effect in the thermal energy range for the depletion
0.		875	1.18548	1.18484	1.18569	-64	21	60		
		1000	1.17100	1.17077	1.17170	-23	70	68		
	BP Compact	1125	1.15419	1.13433	1.15517	14	98	03 /15		
		1375	1.13581	1.13020	1.13078	81	100	45		problem.
		1500	1.09544	1.09662	1.09627	118	83	-29		
		¹ Volume weighted homogenization for thermal energy range ² Effective homogenization method for thermal energy range							•	The effect for fuel block with BP must be taken
		<u>11</u>								into consideration
		$k_{H} k_{E}$								

- DH effect in the thermal range are not small

Conclusions

- The depletion analysis of the recently proposed effective homogenized cross section method was examined using VHTR mini block problems with burnable poison and the change of the spatial self-shielding effect with the depletion was investigated.
- The calculations revealed that the DH effect in the thermal range are not negligible in the initial burnup step and decreases with depletion.
- The results shows that the effect is small when the BP effect disappear.