

20th, October 2022 KNS fall

Evaluation of Environmentally-assisted Fatigue Behavior of Type 316L Stainless Steel in Simulated Small Modular Reactor Environments

- 2022 KNS fall presentation -

October 20th, 2022

Hyeon Bae Lee

Nuclear & High Temperature Materials Laboratory (Nu_HTML) Dept. of Nuclear and Quantum Engineering KAIST(Korea Advanced Institute of Science and Technology)

I. Introduction

II. Experimental

III. Results & Discussion

IV. Summary & Further work

EAC (Environmentally Assisted Cracking)

- Reactor internals, containment & reactor vessels, piping & tubing, turbine discs
- Carbon & low-alloy steels, stainless steels, Ni-alloys, brass, base metal, weld and weld heat-affected zone materials, dissimilar welds
- SCC (Stress Corrosion Cracking), IASCC (Irradiation Assisted Stress Corrosion Cracking), EAF (Environmentally Assisted Fatigue), SICC (Strain Induced Corrosion Cracking)

▼ SCC & IASCC in austenitic stainless steels (sensitized piping, high carbon SS)

▼ SICC initiation in LAS FW nozzle from weld root defects as local stress raisers or crevices

▼ SICC / EAF in LAS FW piping

Nuclear & High Temperature Materials Lab.

KAIST

Environmentally-assisted fatigue (EAF)

- One of most significant degradation mechanisms in nuclear power plant
 - Caused by repeated cyclic stress (thermal & mechanical load) in LWR environment
 - Expression of environmental effect : environmental multiplier (F_{en})

 \square F_{en} = N_{air} / N_{water}

- Hydrogen induced cracking (HIC)
 - Hydrogen produced by corrosion at the crack tip
 - Hydrogen absorbed into the stress concentrated localized region

▲ Elastic – Plastic stress field near the crack tip [1]

▲ Schematic diagram of corrosion mechanisms and fatigue behavior during LCF test in PWR environment [2]

Environmentally-assisted fatigue of austenitic stainless steels

- RG 1.207 & NUREG/CR-6909
 - Require to incorporate environmental effect of NPP in Design Fatigue Analysis of Class 1 components for new reactor and license renewal
 - Cumulative usage factor (CUF) X environmental multiplier (F_{en}) = CUF_{en} < 1.0
- Numerous studies have been performed to meet the requirements, but existing data are performed in LWR environments
- EAF test results in SMR environments are not available

▲ Fen multiplier for stainless steel and Ni-base alloy vs. strain rate in 325 ℃ PWR water [3]

=> EAF behavior of ASSs should be evaluated in boron-free SMR environments for design and integrity analysis

Small Modular Reactor (SMR)

- NuScale (USA), CAREM (Argentina), i-SMR (Korea), etc
- Soluble boron free (SBF) environment
 - Boric acid (H₃BO₃) is dissolved up to 2500 ppm in PWRs
 - However, the use of boric acid has unfavorable safety features
 - Shifting of the moderator temperature coefficient positively at BOC
 - □ Occurrence of CRUD induced power shift (CIPS) due to boron accumulation
 - □ SBF is considered in an innovative-SMR (i-SMR) as well

22

5.00

4.50

Soluble boron free (SBF) environment

- Although the SBF does not contain the soluble boron, a pH control agent is still necessary due to mildly acidic at high pressure and temperature
 - LiOH has used as pH controller in PWRs
 - But, LiOH causes the fast corrosion rate of Zirconium alloy
- Consideration of new pH control agent such as KOH, NH₃, etc.

□ Materials (316L stainless steel)

Chemical composition measurement

SS316L	Fe	Cr	Ni	С	Mn	Мо	Si	Р	S	N
ASTM A240	Bal.	16.0- 18.0	10.0- 14.0	0.030	2.00	2.00- 3.00	0.75	0.045	0.030	0.10
CMTR	Bal.	16.69	10.08	0.02	1.24	2.06	0.51	0.030	0.003	0.072
Measured	Bal.	16.82	10.01	0.027	1.28	2.04	0.53	0.032	0.001	0.067

• Mechanical properties

- Microstructure analysis
 - Grain size : 102 \pm 44 μm

Nuclear & High Temperature Materials Lab.

Environmentally-assisted fatigue equipment

- Recirculation loop usage for water chemistry control
 - Gas purging to achieve dissolved oxygen (DO) and dissolved hydrogen (DH) concentration
- Round bar shape of fatigue specimen used in this study
 - 9.6 mm of diameter and 19.05 mm of gauge length
- Coupon specimens were immersed simultaneously to evaluate corrosion behavior
 - 12 mm of diameter and 1 mm of thickness with a hole

▲ Schematic of round bar type specimen

▲ Schematic of coupon specimen

▲ EAF test equipment

Determination of pH controller concentration

- Based on criteria of PWR water chemistry guideline^[9]
 - pH values at operating temperature should be 7.0 to 7.4
- Calculation of pH at operating temperature
 - Ionization constant of water at target pressure and temperature (150 bar and 325 °C)

$$pK_w = -2n\left[\log(1+Q) - \frac{Q}{Q+1}\rho(\beta_0 + \beta_1 T^{-1} + \beta_2 \rho)\right] + pK_w^G + 2\log\frac{m^0 M_w}{G} [10]$$

Concentration of pH controller ([pH⁺] = mol/L of pH agent)

$$[pH^+] = \frac{K_w}{[H^+]} - [H^+]$$

$$pH = -\log_{10}(\frac{-[pH^+] + \sqrt{[pH^+]^2 + 4K_w}}{2})$$

- Determination of pH controller concentration

pH agent	Pressure(bar)	Temperature(°C)	рК _w	рН _т	mol/L	ppm
КОН	450	325	11.71	7.4	0.000048	2.75
NH ₃	100					0.00082

Environmentally-assisted fatigue test condition

- EAF test performed according to ASTM E606
- EAF test in simulated SMR environments with 2 kinds of pH agent (KOH & NH₃)
- Simulated SMR water chemistry : 2.75 ppm KOH or 0.00082 ppm NH₃

Nuclear & High Temperature Materials Lab.

Environmentally-assisted fatigue test results

- Fatigue life (N₂₅) : number of cycles for the tensile stress to drop 25 % from its peak value
- EAF life results
 - RT air : 10125, 8045 cycles
 - KOH-SBF SMR environment : 1991, 2053 cycles
 - NH₃-SBF SMR environment : 1657, 2030 cycles
- Estimated EAF life in PWR environment according to NUREG/CR6909^[11] : 1533 cycles
- No significant change in fatigue lives in simulated SMR environment

Results - EAF

Environmentally-assisted fatigue test results

- Cyclic hardening response
 - RT air : primary hardening up to ~ 20 cycles / softening behavior until failure
 - SMR environment : primary hardening up to ~ 100 cycles / softening behavior until failure
- Primary hardening
 - Increase in bulk dislocations
 - Dynamic strain aging (DSA) occurrence in simulated SMR environment

Results - EAF

□ Fracture surface observation

- 2.5 mm far from crack initiation point
- Well developed striation observed

 RT air environment, 8045 cycles

 Image: Subset of the second system

 Subset of the second system

 Subset of the second system

▲ Fracture surface tested in RT air environment

▲ Fracture surface tested in KOH-SMR environment

SU5000 30.0kV 17.0mm x5.00k SE(L)

▲ Fracture surface tested in NH₃-SMR environment

Nuclear & High Temperature Materials Lab.

Weight change measurement

- 3 specimens were used for weight change measurement
 - Coupons were exposed to each test environments for 500 h
- Slightly higher weight gain behavior in NH₃-SMR environment
- Clear weight gain behavior compared to PWR environment
 - Kim et al.^[12] reported negligible weight gain even exposure time was 30 days

Surface observation

- Spinel type outer oxide particles on surface
- Number density of outer particles is high in NH₃-SMR environment

▲ Surface oxide particles observation exposed in KOH-SMR environment

▲ Surface oxide particles observation exposed in NH₃-SMR environment

Nuclear & High Temperature Materials Lab.

Oxide film observation

KOH-SMR environment

▲ Oxide film observation formed in KOH-SMR environment

15

Oxide film observation

• NH₃-SMR environment

▲ Oxide film observation formed in NH₃-SMR environment

Electrochemical impedance spectroscopy (EIS)

- Radius of capacitance loop : KOH > NH₃
- Impedance value at low frequency : KOH > NH₃
- Phase angle at low frequency : KOH < NH₃
- => Higher reaction resistance in KOH-SMR environment

▲ Equivalent circuit used for fitting

Test cond.	Rs (Ω•cm²)	Rf (kΩ•cm²)	CPEf (μΩ•s ⁿ •cm ⁻²)	CPEf _n	Rct (GΩ•cm²)	CPEdI (μΩ•s ⁿ •cm ⁻²)	CPEdI _n	χ ² (10 ⁻⁴)
КОН	37.82	6.14	89.52	0.86	16.82	171.30	0.66	8.17
NH ₃	34.89	4.81	112.40	0.84	9.39	329.50	0.63	19.77

□ Mott-Schottky (M-S) for defect density calculation

- Semiconducting properties of the oxide layer measurement method
 - By measuring capacitance in the space charge or depletion region through application of a specific potential range to oxide layer

$$\frac{1}{C_{SC}^2} = \left(\frac{2}{\varepsilon \varepsilon_0 e N_D}\right) \left(U - UFB - \frac{kT}{e}\right)$$
 for the n-type semiconductor

$$\frac{1}{C_{SC}^2} = -\left(\frac{2}{\varepsilon \varepsilon_0 e N_A}\right) \left(U - UFB + \frac{kT}{e}\right)$$
 for the p-type semiconductor

- N_A , N_D = The density of the charge carrier (acceptor N_A , donor N_D)
- ϵ = dielectric constant of oxide (assumed to 15.6 for stainless steels^[13])
- ϵ_0 = dielectric permittivity of vacuum = 8.85 × 10⁻¹⁴ F/cm
- $e = electron charge = 1.60 \times 10^{-19} C$
- $k = Boltzmann constant (1.381 \times 10^{-23} J/K)$
- T = absolute temperature (K)
- U = applied potential
- U_{FB} = flat band potential

Mott-Schottky (M-S) for defect density calculation

No significant difference in defect density

Discussion

Role of Cr-rich oxide as a diffusion barrier of hydrogen absorption

- Hydrogen induced cracking (HIC)
 - Dominant cracking mechanism of EAF of austenitic alloys
 - Corrosion produced hydrogen absorption into stress concentrated localized region
 - Decrease spacing & repulsive force between dislocations, increase dislocation density
- Hydrogen trapping by Cr-rich oxide
 - Hydrogen adsorption energy decreased on Cr-doped metal surface^[15]
 - Diffusivity of hydrogen is lowered in Fe-Cr binary alloys^[16]
 - Delaying occurrence of HIC by hydrogen trapping

Discussion

Corrosion rate in simulated SMR environments

- Clear weight gain behavior compared to PWR environment
 - Weight gain of NH₃-SMR environment was somewhat higher than KOH-SMR environment
- Parabolic kinetics of oxidation in KOH- and NH₃-SMR environment
 - Fast corrosion rate in KOH solution and fast saturation
 - Fast corrosion rate in NH3 solution and slow saturation
- Prolonged corrosion evaluation is considered

21

Summary & Further works

Summary

- EAF tests of 316L SS were performed in simulated SMR environment
 - No significant change in EAF lives was observed
 - Cyclic tendency shows similar tendency
 - Distinct striations observed with oxide film formed on fracture surface

• Oxide film characterization

- Thick oxide layer observation formed in both KOH- and NH₃-SMR environment compared to PWR environment
- Higher reaction resistance was observed in KOH-SMR environment than NH₃-SMR environment
- No significant difference in defect density measurement

Further works

- Oxide film observation at the crack tip region
- Comparison of characteristics of oxide film formed on coupon and fatigue crack tip region
- Figure out the relationship between corrosion behavior and EAF behavior
- Identifying the mechanism of EAF in SMR environment that which mechanism is dominant whether HIC or metal dissolution

NUCLEAR & QUANTUM ENGINEERING

Energy for Earth !!

Thank you

