## Beta phase transformation in Zr-2.5%Nb pressure tube material

SungSoo Kim\*, Jong Yeop Jung\*, and Young Suk Kim\*\*

\*Korea Atomic Energy Research Institute,

\*\* MACTEC(Materials Core Technology Center), 402-1, Nuclear Tech-Biz Center 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Korea \*Corresponding author: sskim6@kaeri.re.kr

1. Introduction

The pressure pipe of CANDU (CANada Deterium Uranium) reactor is manufactured by hot extrusion and cold drawing after water quenched Zr-2.5%Nb ingot in  $\alpha$ -Zr+ $\beta$ -Zr region. Stress relief treatment was performed at 400°C for 24 hours to eliminate the effect of cold drawing. Because of this manufacturing history, the microstructure of the pressure tube is composed of two phases:  $\alpha$ -Zr+ $\beta$ -Zr[1-4].

Since  $\beta$ -Zr is a metastable phase, it is known that  $\beta$ -Zr precipitates  $\omega$ -phase and transforms into  $\beta$ -Nb phase when exposed to heavy water operation environment or heat treatment at reactor operating temperature[5]. Also, during this process, Nb dissolved in  $\alpha$ -Zr, which is the main phase, is discharged from  $\alpha$ -Zr and precipitated as  $\beta$ -Nb phase. Ultimately, Zr-2.5%Nb alloy becomes the material of the  $\alpha$ -Zr+ $\beta$ -Nb phase.

As such, in the pressure tube material,  $\beta$ -Zr is decomposed during operation and Nb is redistributed. From what is known so far, it is known that pressure tube materials are precipitated as  $\beta$ -Nb when heat treated at 400° C. for 24 hours. However, the decomposition behavior of  $\beta$ -Zr is not known in detail.

Therefore, in this study, the decomposition process of  $\beta$ -Zr was systematically studied by heat treatment at 400°C for 50 hours and performing differential scanning calorimeter (DSC) analysis.

### 2. Experiment

The Zr-2.5%Nb alloy used in the experiment is a quadruple melt pressure tube D084 material. Its composition is as shown in Table 1. This specimen was heat treated at 400°C for 2, 5, 10, 20, 32, and 50 hours. This specimen was subjected to DSC analysis up to 950°C to investigate the  $\beta$ -Zr and  $\omega$ -phase decomposition processes. DSC analysis was used to determine the activation energy for the degradation process of the  $\beta$ -Zr phase.

The as received specimens are scanned in different rate of 10, 20, 40k/min by DSC in order to determine the activation energy for the exothermic reaction. The activation energy for the ordering reaction is calculated as follows [6,7];

 $\ln\left((\alpha_2 T_1^2 / \alpha_1 T_2^2) = Q/R(1/T_1 - 1/T_2)\right)$ (1)

where  $T_1$  and  $T_2$  are peak temperatures at scan rate  $\alpha_1$  and  $\alpha_2$  and R is gas constant.

Table 1. Chemical composition of D084 Zr-2.5%Nb (wt %).

| elements    | Zr      | Nb   | Fe         | Та         | Cr          | Ti         | W          | 0           | Н         |
|-------------|---------|------|------------|------------|-------------|------------|------------|-------------|-----------|
| composition | Balance | 2.6% | 980<br>ppm | 100<br>ppm | <100<br>ppm | <50<br>ppm | <50<br>ppm | 1100<br>ppm | <3<br>ppm |

#### 3. Results and Discussion

Figure 1 shows the results of DSC analysis at 400°C up to 50 hours. The pressure tube in the as received state shows an endothermic reaction at 511°C, but not at 800°C. However, in the specimens heat treated at 400°C for 2, 5, and 10 hours, the endothermic reaction at around 511°C is smaller than that of the as-received specimen, but it shows an endothermic reaction of 10 J/g at around 750-850°C. Specimens heat-treated at 400°C for 20 hours do not show endothermic reaction near 800°C.

As described above,  $\beta$ -Zr undergoes  $\omega$ -phase and transforms into  $\beta$ -Nb phase. When heat treatment is performed at 400°C for 2-10 hours, it seems that  $\omega$ -phase is precipitated. However, when heat treatment is carried out at 400°C for 20 hours or more, it is understood that the  $\omega$ -phase phase does not precipitate. But  $\beta$ -Zr is transformed to  $\beta$ -Nb immediately since enough time is applied at 400°C for 20 hours or more, so an endothermic reaction does not occur near 800°C.

The DSC results are shown in table. 2. Figure 2 shows the activation energy obtained during the decomposition of  $\beta$ -Zr in the as received Zr-2.5%Nb alloy. Q=326 kJ/mol. This value is considered to be the activation energy required for the phase transformation of the  $\beta$ -Zr phase of the BCC structure to the  $\omega$ -phase of the HCP structure.



Fig. 1. DSC results of variously treated Zr-2.5%Nb pressure tube material (quadruple melt D084) aged at 400°C.

(2020).

[6] S. Kim, I. L. Kuk, J. S. Kim, Materials Science and Engineering **A279**, 142, 2000.

Table 2. Peak temperature variation with heating rate in water quenched mild steel.

|                  | 1                     |                                |                                     |                           |             |
|------------------|-----------------------|--------------------------------|-------------------------------------|---------------------------|-------------|
| 1<br>c           | Material condition    | Heating<br>Rate<br>(α, °C/min) | Peak<br>Temperat<br>ure<br>(Tp, °C) | 1/T<br>[K <sup>-1</sup> ] | α/Tp2       |
| ĺ                | As<br>received<br>Zr- | 10                             | 504.7                               | 0.001286                  | 1.65275E-05 |
|                  |                       | 20                             | 515.7                               | 0.001268                  | 3.21396E-05 |
| 2.5%Nb<br>(D084) | 40                    | 525.8                          | 0.001252                            | 6.26644E-05               |             |



Fig. 2. Determination of activation energy for beta-Zr phase in Zr-2.5%Nb pressure tube material (quadruple melt, D084).

## 4. Conclusion

1. In the 400°C heat treatment experiment for Zr-2.5%Nb pressure tube material, the time for  $\beta$ -Zr to decompose into  $\omega$ -phase is completed in 10-20 hours. 2. The temperature at which  $\beta$ -Zr is decomposed into  $\omega$ phase is about 511°C, and the temperature at which  $\omega$ phase is transformed into  $\beta$ -Zr is about 750-850°C. 3. The activation energy of the transformation of  $\beta$ -Zr into  $\omega$ -phase near at 511°C is about 326 kJ/mol.

### Acknowledgments

This work was supported by the NRF of Korea (NRF) grant funded by the Korea government (ministry of Science and ICT). (Project No. RS-2022-00155533)

# REFERENCES

[1] R. Adamson, C. Coleman, M. Griffiths, J. of Nucl. Mater., **521**, 167 (2019).

[2] E. F. Ibrahim, and B. A. Cheadle, Can. Metal. Quart. 24, 273 (1985).

[3] G. J. Field, J. Nucl. Mater. 159, 3 (1988).

[4] D. Rodgers, C. Coleman, M. Griffiths, B. Bickel, J. Theaker, I. Murr, A. Bahurmuz, S. Lawrence, M. Resta

Levi, J. of Nucl. Mater., **383**, 22 (2008).

[5] S. Kim, J. Jeong, Y. Kim, J. Met. Mater. 58, 590

<sup>[7]</sup> S. Kim, J. Kim, J. Met. Mater., 44, 473, 2006.