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1. Introduction 

 

A huge role in accelerating our daily routines belongs 

to development of Artificial Intelligence as a whole, 

and Deep Learning in particular. Being quite 

conservative, the area of Nuclear Engineering is one of 

the last to introduce Artificial Neural Networks (ANN) 

into their workflow. 

Originally, ANNs in nuclear industry were used for 

straightforward and well-known tasks such as image 

recognition, object detection, etc. Over the time, ANNs 

were found suitable not only for solving abstract 

problems but also for directly dealing with numerical 

data. One of promising areas where such approach can 

be useful is cross-section (XS) processing. In Nuclear 

Engineering, two types of cross-sections (XS) are 

known: microscopic XS that characterize each nucleus, 

and macroscopic XS that describe certain material 

composition as a macro-system. The physical meaning 

of those types of XS is also different. Thus, microscopic 

XS is a measure of probability for a certain nucleus to 

interact with a neutron of certain energy. Quite 

differently, macroscopic XS characterize the mean 

distance that a neutron of certain energy can travel in 

certain material before interacting with one of material 

nuclei. 

In computer codes for reactor simulation, it is quite 

common to deal with both of XS types, and to convert 

one type into another. There are examples of ANN 

applications for generating or enhancing each of given 

XS types. Thus, Vicente-Valdez et al [1] suggested a 

method to tweak and improve the microscopic XS 

offered by ENDF nuclear data library using a Deep 

Neural Network (DNN). Whewell et al [2] proposed a 

way to replace certain macroscopic XS that are used in 

a neutron transport code by an ANN model, thus 

reaching reduced memory consumption. Lastly, Li et al 

[3] proposed using a DNN model paired with a 

regression tree for homogenized macroscopic XS 

generation for the purpose of using them in a nodal 

diffusion code.  

The last-mentioned work became the turning point 

for Dzianisau et al. [4] who expanded the homogenized 

macroscopic XS approach to supporting a variable Fuel 

Assembly (FA) geometry and lattice type, thus making 

it possible to use a trained ANN model as a direct 

substitute of a lattice physics code STREAM in a two-

step code system [5]. As a result, a new hybrid code 

called RAST-AI was developed. The aim of the current 

study is to continue the development of RAST-AI by 

improving the ANN model so that it could support fuel 

with added Burnable Absorbers (BA).  

Hence, this study is organized in the following way. 

The description of the data management and ANN 

model design used in this study is presented in Section 

2. Then, the main results of the trained model testing, 

including the results of applying the model in RAST-AI 

for 3D core-wise problems, are given in Section 3. 

Finally, the main conclusions and plans for future 

studies are discussed in Section 4. 

 

2. Methodology 

 

To add the BA fuel support into the model, proper 

training dataset should be architected and generated. 

The philosophy behind generating training data in this 

study follows the previously implemented models in 

terms of using uniform distribution of pins in a FA.  

 

2.1. Training data preparation 

In previous works [4], only fuel containing rods were 

used in a lattice. In this study, burnable absorber (BA) 

rods had to be added to further improve the model. 

Previously, the training data was architected in such a 

way that each pin location was filled with each type of 

enrichment equal number of times.  

This idea came from a thought experiment in which 

we imagined that a dataset that consists of all possible 

pin combinations was generated. Such dataset would 

have very large size and require enormous hardware 

and time resources to be produced. However, there is 

one property of such a complete dataset that would 

stand true regardless the number of possible 

combinations or the number of variables (that 

eventually determines its’ size). This property is the 

uniformity of pin enrichment distribution across all pin 

locations.  

Therefore, we decided to utilize this property of a 

complete dataset in a much smaller training dataset that 

is used in this study. The rule of uniformity was proven 

to be efficient in our previous works, hence, the same 

rule was applied to the newly generated BA dataset at 

two different levels. At the outer level, BA pins were 

marked in the same fashion as fuel pins, and then 

uniformly distributed across supported FA lattices. 

Then, at the inner level, the dataset was equally divided 

into smaller subsets, and a fixed value of Gadolinia 

(Gd) weight content was set for the entire subset and 

placed into the designated BA pin positions. Hence, 

each FA either contained a single type of BA pins or 
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did not contain any BA pins at all. A schematic that 

represents the pin mixing philosophy is shown in Fig. 1. 

A total of 160,000 training samples were generated, 

including 80,000 samples for 16x16 lattice, and 80,000 

samples for 17x17 lattice. These training samples were 

added to previously generated 99,000 samples with no 

BA pins [4]. Each FA geometry contained a total of 5 

combinations of fuel temperature (TFU), moderator 

temperature (TMO), and boron concentration (BOR) 

taken from the list previously presented by Dzianisau et 

al [6]. The optimization method from the given study 

was used to determine the overall size of the data. 

 

2.2. Testing and validation data 

To avoid the problem of having duplicate samples in 

training and testing data, the validation and testing 

datasets in this study were designed and generated 

independently from the training dataset. At the design 

stage, the datasets were verified to be non-overlapping 

and to not contain any duplicates. In addition to that, 

after all the data was generated, a separate code was 

developed to validate the absence of duplicates in 

obtained data. 

To produce more meaningful testing results, a 

completely different type of data was designed and 

generated. This data, called out-range, did not follow 

any of the training data patterns, such as discrete values 

of fuel enrichments, TFU, TMO, BOR, and Gd. Instead, 

those values were taken randomly within the range of 

the training data (TMO, TFU), or beyond the range of 

training data (BOR, fuel enrichment, Gd). Such data is 

very unlikely to be found in real world applications as it 

clearly violates the intend of having a smooth pin power 

distribution, as well as utilizing not more than 2 

enrichments within each FA. Hence, the out-range data 

is aimed to provide the highest imaginable complexity 

to the trained ANN model. 

The total size of the validation dataset was 18,000 

samples. The size of the in-range testing dataset was 

36,000 samples with BA pins, and 36,000 samples 

without BA pins. The size of the out-range testing 

dataset was 10,000 samples with BA pins, and 10,000 

samples without BA pins. This data includes both 

16x16 and 17x17 lattices in equal quantities. Lastly, it 

is worth emphasizing that the in-range testing data 

contained only one type of BA pin per each FA, while 

the out-range testing data consisted random number of 

non-fixed BA pin types per each FA.  

 

2.3. Neural network model 

Once the training data was generated, it was used to 

train a Convolutional Neural Network (CNN) model 

that is depicted in Fig. 2. The difference of given CNN 

 

Fig. 1.  Frequency of occurrence of each pin type 

across training samples. 

 

Fig. 2.  The structure of input, output, and the neural network model where the input represents a typical quarter of a 

fuel assembly and has a shape of 9x9x5, 5 being the number of channels per each “pixel”. 
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model compared to other conventional models is that it 

does not perform any reduction in size for the input 

image (using pooling or striding). In fact, given that the 

input image size is just 9 by 9, it is hard to justify the 

necessity of size reduction. In addition to that, the input 

data used in our work has much higher individual 

significance than a typical pixel data used in image-

processing applications of CNN. Therefore, it is within 

our best interests to retain as much of the input data as 

possible.  

As mentioned above, the input consists of a quarter-

FA, 9x9 pin arrangement array, where each pin has 5 

channels, thus effectively turning the input shape into a 

3D 9x9x5 array. The channels for each pin are the 

following: pin enrichment (X), takes a normalized value 

or zero in case it is not a fuel rod but a guide tube; 

normalized TFU of the target XS set; normalized TMO 

of the target XS set; normalized BOR of the target XS 

set; and finally, normalized Gd content, which takes 

zero values for all but BA rods. 

The output consists of a vector that contains target 2-

group XS sets, including diffusion coefficients, 

absorption XS, fission XS and its products, scattering 

XS. These values are necessary for running a nodal 

diffusion code and getting core-wise and node-wise 

results. The output also contains assembly discontinuity 

factors (ADF) and heterogeneous form function (HFF). 

ADF and HFF are required for performing pin power 

reconstruction at the nodal level once the homogenized 

solution is obtained for the target reactor core geometry. 

The model hyperparameters included the following. 

The chosen batch size was 70, the optimizer was Adam, 

loss function was Huber loss, total number of epochs 

for training was 10,000 with early stop tolerance of 

2,000 epochs. The model with the lowest validation loss 

was saved as the best model. Python 3.8 and 

TensorFlow 2.9.1 were used as an environment for the 

model. 

 

3. Neural network testing results 

 

The ANN model was trained in accordance with the 

information provided in the previous section. The total 

number of epochs before early stop was 7,176, thus 

yielding the best model recorded at epoch 5,176. Then, 

the model was tested using previously introduced in-

range and out-range testing data. The results are shown 

in the subsections below. 

 

3.1. In-range testing results 

The results of testing HFF distribution for the in-

range dataset with BA rods is depicted in Fig. 3. Given 

that the testing samples without BA rods were shown 

by Dzianisau et al [4], only the new results obtained for 

samples that include BA rods are given here.  

 

 

 

 

 

Overall, Mean Relative Difference (MRD) between 

the ANN-generated values and the reference values was 

found below 1% for both tested FA lattices. There are a 

few outliers such as down-scattering XS (from energy 

group 1 to energy group 2) or absorption XS for energy 

group 1, while other MRD values were found below 

0.4%. As for the HFF results, both lattices showed 

decent results with MRD values confidently below 1% 

for each pin location. Since the trained model supports 

both of lattice types and was trained with mixed data, it 

shows higher MRD in the areas where 16x16 and 17x17 

FA lattices are most different. Such areas as the 

peripheral of the 17x17 FA or the large guide tube 

location of 16x16 FA were found to contain the highest 

MRD. 

 

 

 

 

 

 

 

 

 

Fig. 3.  Mean Relative Differences (in %) of the 

trained CNN model vs the reference result for in-range 

testing data with BA rods. 
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3.2. Out-range testing results 

Similar to the in-range testing results, the out-range 

data was tested, the results of HFF generation are 

shown in Fig. 4. A simple comparison with the in-range 

results yields higher values of MRD for all output 

values. At the same time, the results stay well in line 

with the testing data complexity as discussed in Section 

2.  

 

3.3. RAST-AI results  

The homogenized macroscopic XS, ADF and HFF 

were obtained using both a trained CNN and our in-

house code STREAM. Then, they were compared using 

RAST-AI and RAST-K [5] nodal diffusion codes. The 

reactor models for this test were OPR-1000 [7] and 

APR-1400 [8] pressurized water reactors that are 

commercialized in South Korea. The results of the 

testing are summarized in Table I.  

 

 

 

Table I: RAST-AI Compared to STREAM/RAST-K 

* MAD – Mean Absolute Difference 

** PPF – Pin Peaking Factor 

 

Based on the results, it could be found that the 

reactor size does not have a significant impact on the 

core-wise result. Despite APR-1400 has more FAs, the 

average pin powers and multiplication factors did not 

show higher difference with the reference. What did 

affect the result is the use of out-range data. Given that 

out-range data violates all possible rules in terms of 

proper fuel design for reactors as discussed in Section 2, 

one of the reasons for having a larger difference against 

the reference could be the limitation of the nodal 

diffusion method itself. More work should be 

performed on determining the limitations of the used 

methods. 
 

4. Conclusions 
 

In this study, a new CNN model was developed to be 

used in a hybrid nodal diffusion code RAST-AI. The 

main advantage of the model is the capability to work 

with Gd fuel, which is the most used type of BA fuel. 

The model was thoroughly tested using independent in-

range and out-range testing datasets. The results of the 

ANN output compared with the reference show solid 

performance of the model. In particular, the MRD was 

Parameter 
OPR-

1000 

APR-

1400 

In-range testing, 16x16 lattice 

Multiplication factor, MAD*, 

pcm 
74.7 76.9 

PPF** Fq, MRD, % 0.478 0.459 

PPF Fr, MRD, % 0.477 0.459 

PPF  FdH, MRD, % 0.477 0.459 

Restored Pin Power, MRD, % 0.307 0.396 

In-range testing, 17x17 lattice 

Multiplication factor, MAD, 

pcm 
67.5 65.6 

PPF Fq, MRD, % 0.835 0.938 

PPF Fr, MRD, % 0.835 0.938 

PPF  FdH, MRD, % 0.835 0.938 

Restored Pin Power, MRD, % 0.394 0.396 

Out-range testing, 16x16 lattice 

Multiplication factor, MAD, 

pcm 
306.2 309.9 

PPF Fq, MRD, % 1.316 1.548 

PPF Fr, MRD, % 1.315 1.546 

PPF  FdH, MRD, % 1.315 1.546 

Restored Pin Power, MRD, % 0.812 0.882 

Out-range testing, 17x17 lattice 

Multiplication factor, MAD, 

pcm 
282.2 282.9 

PPF Fq, MRD, % 1.331 1.565 

PPF Fr, MRD, % 1.331 1.563 

PPF  FdH, MRD, % 1.331 1.563 

Restored Pin Power, MRD, % 0.848 0.891 

 

 

 

Fig. 4.  Mean Relative Differences (in %) of the trained 

CNN model vs the reference result for out-range testing 

data with BA rods. 
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found below 1% across the in-range testing data. The 

values of MRD for out-range data were found slightly 

higher compared to the in-range data, thus slightly 

exceeding the 1% limit of MRD in some cases, such as 

HFF. However, given that the uncertainty of the 2-step 

approximation method for pin power reconstruction 

could reach 5-10% depending on the geometry, the 

obtained results are still considered reasonable. Since 

the commercially used FA designs avoid following 

dangerous patterns presented in out-range testing data, 

this result should be thought of as an attempt to create 

the most extreme conditions that challenge not only the 

ANN model but also the nodal methods themselves.  

In our future works, we are planning to introduce 

further capabilities into the RAST-AI ANN model. 

There is a plan to develop a model that can work with 

moving control rods, thus making it possible to simulate 

transient scenarios. The very final version of RAST-AI 

should also include the depletion module that could be 

used for proper assessment of nuclear fuel cycle of 

studied reactor cores. 
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