KNS Spring Meeting OCT 20, 2022

Efficient cold immobilization of Bi⁰-rGO iodine waste

Tien-Shee Chee ^a, Ho Jin Ryu ^{a,b}

 ^a Department of Materials Science and Engineering, KAIST, Korea
^b Department of Nuclear and Quantum Engineering, KAIST, Korea

Outline

01 Background

02 Objective

03 Immobilization of I–129

04 Results

05 Summary

Background

Problems related with I-129

- Most troublesome radioisotopes
- Radioactive and acutely toxic
- long-lived fission products: about 16 million years
- Negative health effects (thyroid diseases)
- High environmental mobility lodide(I⁻)predominates in aqueous solutions

Composition of Spent Nuclear Fuel

	Half-life	Fission yield
I-127	stable	0.115
I-129	1.57x10 ⁷ y	0.706
I-131	8.02 d	2.878
I-133	20.8 h	6.59
I-135	6.57 h	6.39

J.Huve. et al, RSC Adv. 8 (2018) 29248

Capture and storage of iodine is of great importance

Background

	Technique	Advantages	Disadvantages	Material examples
	Hot pressing	High densities Limited grain growth	Batch process	Pb(Zr,Ti)0 ₃ (Ba,Sr)Ti03 Diamond
	Microwave sintering	Lower temperatures Faster process Multimode or single mode High densities	Limited success in mass production Inhomogeneity in coupling Limited yields for large parts	Al ₂ O ₃ BN BaTiO ₃ WC Metals
	Spark plasma sintering	Wide range of materials Enhanced densification	Batch process Upscaling High cost	Metals BaTiO ₃ ZrO ₂ SiC AlN
	Flash sintering	Densified, very fast rates Limited grain growth	Microcracking in thermal shocking	ZrO ₂ SrTiO ₃
	Hydrothermal sintering	Low temperatures Environmentally friendly Meta stable materials can be sintered	Long processing times Lower densities in some cases	TiO ₂ SiO ₂ (amorphous an d quartz) ZrO ₂ BaTiO ₃

In conventional sintering:

- Processing temperature > 900°C
- Sintering time > 60 min
- Volatilization of radionuclides

To explore ways to transform materials to waste forms by encapsulating them at low temperatures into highly durable waste forms

Low temperature sintering and easy processing techniques need to be developed for long term disposal of I-129

Immobilization of I-129 (2)

Primary role of a waste form:

To immobilize radioactive and hazardous constituents in a stable & solid matrix

Criteria:

- Low cost fabrication
- Ease of fabrication
- High waste loading capacity
- Durability of waste form

Vitrification: Standard immobilization method

- low solubility of iodine in silicate melts
- high volatility at standard vitrification process temperatures
- instability in the alkaline environment of deep geological layers

Studies on bonding materials: Cement and Glasses

- Low waste loading capacities
- Long processing times
- High energy consumption
- High processing temperature

Immobilization of I-129 (3)

Results(1)

SEM of fractured surface

 a dry-sintered pellet is less dense than a pellet sintered with the addition of a liquid phase under the same conditions (pressure, temperature and dwell time)

Results(2)

Nuclear Fuel Materials Laboratory

Results(3)

Chemical durability test

Stability of sintered samples

Protocol = ASTM-1285 standard Sample = 1g crushed & sieved powder (150 µm) Leachant = ASTM Type-I water Temperature = 90 ± 1°C Duration = 7 days

$$NLR_i = \frac{C_i}{t \times f_i \times S/V}$$

 NLR_i = Normalized leaching rate ith element

 C_i = Concentration of component I (g/L) leached into the water after a reaction time of t

 f_i = weight fraction of the ith element in the starting sample

S/V (m² /L) = Specific Surface Area of the powdered waste form (1g)

- 1. Bi⁰
- 2. Bil₃ before sintering
- 3. Bil₃ after sintering
- 4. BIOI after sintering

Summary

- Bi⁰-rGO iodine wastes were immobilized with low temperature sintering
- 200 °C under a uniaxial pressure of 500 MPa for 20 min with the addition of Bi₂O₃ & 20 wt.% deionized water
- Effect of the water content and Bi_2O_3 : shifting of Bil_3 to mostly BIOI
- Based on these prior data, cold sintering could be an option for immobilization of I-129

