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▪ The continuous-energy Monte Carlo (MC) is often 
considered as the most accurate method to solve particle 
transport problems.

▪ Despite this advantage, MC solutions suffer from statistical 
uncertainties due to the nature of the MC method. 
Especially when the fine-mesh tallies are required: true 
high-fidelity whole core multi-physics simulations.

▪ This problem could be overcome by increasing number of 
histories. 

▪ However, this straightforward approach would require 
expensive resources, that makes MC codes less efficient. In 
this context, the Functional Expansional Tally (FET) can 
play its role

▪ In this work, the multi-dimensional FET for a cylindrical 
geometry is implemented into the MCS code [1]

[1] H. Lee et al., “MCS – A Monte Carlo particle transport code for large-scale power reactor 
analysis,” Ann. Nucl. Energy, vol. 139, p. 107276, May 2020. 
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▪ FET [2,3] solutions are obtained by expanding the tally quantity as a linear 
combination of polynomials 𝜓 Ԧ𝜉

▪ where 𝑎𝑛 is the expansion coefficients, Ԧ𝜉 is the neutron phase space 
consisting of (Ԧ𝑟, Ω, 𝐸).

▪ The 𝑘𝑛 is the normalization constant which can be calculated according to 
the choice of the polynomials basis set that is being used

▪ The 𝜌 Ԧ𝜉 is the weighting function that shall be both complete and 
orthogonal with respect to 𝜓𝑛 Ԧ𝜉 .
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▪ Fortunately, in MC simulations, the calculations of the expansion 
coefficients are easily done with collision-based estimator. The unbiased 
collision-based estimator for coefficients 𝑎𝑛 of reaction 𝑥 is defined by [3, 
4]

▪ where 𝑁 is the total number of particles in each batch, 𝐾𝑖 is the total 
number of collisions of particle 𝑖, and 𝑤𝑖𝑘 is the particle 𝑖 weight at 
collision 𝑘.

▪ In the MCS code, the Legendre polynomials are used for the axial 
direction and the Zernike polynomials are used for the radial direction in 
a cylindrical geometry.
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▪ The multi-dimensional FET implementation in MCS assumes that solutions are 
separable. For example, in the cylindrical geometry, the solution is assumed separable 

as follow

▪ This separability is favored to save computational memory.

▪ A very efficient recursive method [5] to construct the radial parts of the Zernike 

polynomials is adopted in the MCS

▪ where the first few order polynomials can be manually determined.

▪ To our knowledge, this method is applied into FET for the first time.

[5] B. H. Shakibaei and R. Paramesran, “Recursive Formula to Compute Zernike Radial Polynomials,” Opt. Lett. 

Vol. 38, Issue 14, pp. 2487-2489, Jul. 2013.
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▪ Once the radial parts are calculated, the Zernike 
polynomials can be calculated in a usual fashion.

▪ One of the limitations of FET is due to the fact the 
polynomials only good when approximating a 
smooth distribution

▪ But they can become less effective if they are 
used to expand functions that contain 
discontinuities.

▪ This issue can be solved by employing a 
piecewise expansion.

▪ In a piecewise expansion, a single tally region 
with known discontinuities is divided into two or 
more smaller tallies that are expected to have 
continuous solutions.

Figure from Ref [4]
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▪ To demonstrate FET capability in MCS, 
we developed a hypothetical 2x2 three-
dimensional lattice problem

▪ Pin radius = 2 cm. Pitch = 3 cm.

• Black: Fuel 3.1% wt

• Yellow: Fuel 2.1% wt

• Pink: Boron

▪ Height spanned from -25 cm to 25 cm. 

▪ Axially, 2 cm thick Boron is located at 
the axial center of the 3.1% wt fuel. 

▪ And other 2 cm thick Boron is located 
at the 10 cm above axial center of the 
2.1% wt fuel.

▪ Only tally for 3.1% wt fuel is calculated.
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▪ Cases

▪ All cases use 25 inactive and 150 active batches

▪ For axial flux tally, the problem is divided into 10,000 mesh axially

▪ Mesh division for radial flux tally
• Radial         : 40

• Azimuthal : 72

• Axial           : 50

▪ FET used 7th order of Legendre polynomials and 11th order of 
Zernike Polynomials (total 102 coefficients were stored – 32 for 
each material regions)

Cases Tally Type Number of Histories/batch

FET FET 300,000

MESH_30 Normal Mesh Tally 300,000

MESH_200 Normal Mesh Tally 2,000,000
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FET axial flux vs MESH_30 
(Fuel 3.1% wt)

FET axial flux vs MESH_200
(Fuel 3.1% wt)

Cases Max Rel Diff Min Rel Diff RMS

MESH_30 13.70% -10.43 1.56%

MESH_200 13.58% -4.45 0.91%

Relative Difference Against FET
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Radial flux Distribution at z = -10 cm
(Fuel 3.1% wt)
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Cases Max Rel Diff Min Rel Diff RMS

MESH_30 20.18% -15.33 5.04%

MESH_200 7.49% -7.45 2.13%

Relative Difference Against FET for Radial 
Flux at z= -10 cm

Running Time Relative to FET

Cases Running Time Relative to FET

FET 1

MESH_30 0.96

MESH_200 8.34

For the same given number of histories, the running time of 
FET is slightly slower due to the calculation Legendre and 
Zernike polynomials for every collision -> Compensated by 
smoother tallies!
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▪The FET standard deviation calculations require the 
calculations of the covariance matrix of the individual 
coefficients' standard deviation. This is because their 
standard deviations are correlated.

▪However, the calculations of covariance matrix during MC 
simulations are computationally expensive; thus, this 
approach is counterproductive to the objective of the FET.

▪Therefore, only for purpose of this test, we ran an identical 
problem 30 times in MCS using different random number 
seeds to calculate the real standard deviations of the 
tallied quantities.

▪The same lattice problem will be used and the standard 
deviation for the axial power of the 3.1% enriched fuel pin 
will be calculated.
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▪Cases

▪All cases use 25 inactive and 150 active batches, and 50,000 
histories per batch.

▪The standard deviations were calculated from 30 
simulations using different random number seeds.

Cases Number of axial division

FET_100 FET 100

FET_1000 FET 1000

MESH_100 Normal Mesh Tally 100

MESH_1000 Traditional Mesh Tally 1000
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Axial flux standard deviations for each case
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▪FET is suitable for problems that require fine mesh tallies: 
whole core high fidelity multi-physics simulations

▪FET uncertainties are insensitive to the mesh sizes.

▪Conversely, the conventional mesh tally standard deviation 
highly depends on the mesh size.

▪ In that perspective, FET also can be seen as a variance 
reduction method.

▪Now we will attempt to further implement FET for true 
high-fidelity multi-physics simulations.

▪Challenges:
• Cannot use surface-based tracking -> need to adopt continuously 

varying material tracking (CVMT).

• Many material discontinuity in the axial direction: spacer grids -> 
need to store numerous expansion coefficients
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