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1. Introduction 

 
The continuous-energy Monte Carlo (MC) is often 

considered as the most accurate method to solve particle 

transport problems because it uses fewer approximations 

compared to deterministic method. For this reason, MC 

solutions are usually used as reference solutions for 

deterministic computer codes. Despite this advantage, 

MC solutions suffer from statistical uncertainties due to 

the nature of the MC method. Generally, this uncertainty 

is more severe when one desires localized solutions in 

which MC tally must be done in very small cells or 

meshes. This problem could be overcome by increasing 

number of histories; however, this approach would 

require expensive computational resources, thus make 

MC codes less efficient. 

 

In this context, the Functional Expansional Tally (FET) 

[1,2] can play its role. In FET, the actual solutions are 

approximated in a truncated linear combination of 

polynomials and MC tallies are used to determine the 

corresponding coefficients of the polynomials. Therefore, 

FET enable to produce continuous representation of 

tallied quantities in MC simulations. Recently, we have 

extended MCS capability to produce tally quantities 

using FET.  In this work, we will demonstrate the FET 

capability in the MCS code [3]. 

  

 

2. Methods 

 

2.1 Functional Expansion Tally 

 

FET solutions are obtained by expanding the tally 

quantity as a linear combination of polynomials ψ(ξ⃗) as 

shown in the Eq. 1 

𝑓(ξ⃗) = ∑ �̅�𝑛𝑘𝑛ψ𝑛(ξ⃗)

∞

𝑛=0

(1) 

�̅�𝑛 = ⟨𝑓, ψ𝑛⟩ = ∫𝑓(ξ⃗)ψ𝑛(ξ⃗)ρ(ξ⃗)𝑑ξ⃗
Γ

(2) 

 

where �̅�𝑛 is the expansion coefficients, ξ⃗ is the neutron 

phase space consisting of (r⃗, Ω⃗⃗⃗, E) , and 𝑘𝑛  is the 

normalization constant which can be calculated 

according to the choice of the polynomials basis set that 

is being used 
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𝑘𝑛 =
1

||ψ𝑛||2
 

and  

||ψ𝑛||2 = ∫ψ𝑛
2 (ξ⃗)ρ(ξ⃗)𝑑

Γ

ξ⃗ (3) 

The ρ(ξ⃗)  is the weighting function that shall be both 

complete and orthogonal with respect to ψ𝑛(ξ⃗). 

 

Fortunately, the calculations of the expansion 

coefficients in Eq. 2 are easily done in MC simulations 

with both analog and collision-based estimator. The 

unbiased collision-based estimator for coefficients �̅�𝑛 of 

reaction 𝑥 is defined in Eq. 4 

 

�̅�𝑛 =
1

𝑁
∑ ∑ 𝑤𝑖,𝑘

Σ𝑥(ξ⃗𝑖,𝑘)

Σ𝑡(ξ⃗𝑖,𝑘)

𝐾𝑖

𝑘=1

ψ𝑛(ξ⃗𝑖,𝑘)ρ(ξ⃗𝑖,𝑘)

𝑁

𝑖=1

(4) 

 

where 𝑁 is the total number of particles in each batch, 𝐾𝑖 

is the total number of collisions of particle 𝑖, 𝑤𝑖,𝑘 is the 

particle 𝑖  weight at collision 𝑘 , Σ𝑥(ξ⃗𝑖,𝑘)  is the 

macroscopic cross section for reaction 𝑥 at phase space 

ξ⃗𝑖,𝑘 , and Σ𝑡(ξ⃗𝑖,𝑘) is the total macroscopic cross section 

for reaction 𝑥 at phase space ξ⃗𝑖,𝑘 [4]. 
 

2.2 Choices of the Polynomial Basis 

 

Although any set polynomial basis can be employed, 

a set of orthogonal polynomials is usually preferred. By 

setting weighting function ρ as the zeroth order of a set 

of orthogonal polynomials which is equal to unity, Eq. 3 

and Eq. 4 can be simplified. In the MCS code, the 

Legendre polynomials are used for rectangular geometry 

problems and Zernike polynomials are used for radial 

problems. Note that when constructing the polynomials, 

the variable must be scaled into its domain. For example, 

the variable Legendre polynomials must be scaled over 

the interval [-1, 1]. 

 

The construction of Legendre polynomials can be 

done recursively as follow 

 

𝑃𝑛(𝑥) =
(2𝑛 − 1)𝑥𝑃𝑛−1(𝑥) − (𝑛 − 1)𝑃𝑛−2(𝑥)

𝑛
 

 

with 𝑃0 = 1  and 𝑃1 = 𝑥 . While for the Zernike 

polynomials, a very efficient recursive method to 
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construct the radial parts of the Zernike polynomials 

developed in the reference [5] is adopted in the MCS 

 

𝑅𝑚
𝑛 (𝑟) = 𝑟[𝑅𝑛−1

|𝑚−1|(𝑟) + 𝑅𝑛−1
𝑚+1(𝑟)] − 𝑅𝑛−2

𝑚 (𝑟) 

 

where the first few order polynomials can be manually 

determined. To our knowledge, this method is applied 

into FET for the first time. Once the radial parts are 

calculated, the Zernike polynomials can be calculated in 

a usual fashion. 

 

2.3 FET Implementation in MCS 

 

The multi-dimensional FET implementation in MCS 

assumes that solutions are separable. For example, in the 

cylindrical geometry, the solution is assumed separable 

as follow 

 

𝑓(𝑟, θ, 𝑧) = 𝑔(𝑟, θ)ℎ(𝑧) 

 

This separability is favored to further save computational 

memory. Numerical experiments have shown that the 

separable FET appears to give a rough approximation for 

non-separable distributions and does so for a fraction of 

the computational cost of the fully coupled solution [2]. 

 

One of the limitations of FET is due to the fact the 

polynomials only good when approximating a smooth 

distribution, but they can become less effective if they 

are used to expand functions that contain discontinuities. 

As suggested in [2], this issue can be solved by 

employing a piecewise expansion. In a piecewise 

expansion, a single tally region with known 

discontinuities is divided into two or more smaller tallies 

that are expected to have continuous solutions.  

 

 

3. Results 

 

3.1 Problem 

 

To demonstrate FET capability in MCS, we developed 

a hypothetical 2 × 2 three-dimensional lattice problem 

with pin diameter of 2 cm and 3 cm of pitch as shown in 

the Fig. 1. In the radial direction, the lattice has three fuel 

pins (one pin has 3.1% enrichment fuel and the other two 

have 2.1% enrichment fuel) and one boron absorber pin. 

The radial boundary conditions (BCs) are reflective. In 

the axial direction, 2 cm thick of boron absorber is 

inserted at the axial center of the 3.1% fuel pin. Other 2 

cm thick of boron absorbers are also inserted at the 10 

cm above axial center of the 2.1% fuel pins. The lattice 

height spans from -25 cm to 25 cm with vacuum 

boundary conditions at the axial direction. 

 

3.2 Axial Power Tally 

 

To perform comparisons between conventional tally 

and FET, three different cases to solve the lattice 

problem are established as shown in the Table I. All cases 

used 25 inactive and 150 of active batches. The FET 

solutions were obtained using 7th order of Legendre 

polynomials and 11th order of Zernike polynomials in 

which a total of 102 expansion coefficients (78 Zernike 

and 24 Legendre expansion coefficients) were stored 

during simulation. 

 

 
(a) 

 
(b) 

Fig. 1. (a) Radial and (b) axial views of the lattice problem. 

Black color denotes 3.1% enrichment fuel, yellow color 

denotes 2.1% enrichment fuels, pink color denotes boron 

absorbers, and grey color denotes moderator material. 
 

Table I: Cases to Solve the Lattice Problem 

Cases Tally type 

Number 

histories/

batch 

FET FET 3 × 105 

MESH30 Conventional mesh tally 3 × 105 

MESH200 Conventional mesh tally 2 × 106 

 

The axial power tally for the 3.1% enriched fuel pin of 

the FET case compared to MESH30 and MESH200 cases 

are shown in the Fig. 2. To show the FET benefit over 

conventional mesh tally, the axial power is tallied axially 

into 10,000 space bins. As shown in the Fig. 2(a), the 

FET relative axial power is very smooth. In contrast, by 

using the same number of histories (MESH30 case), the 

conventional mesh tally produces obvious ripples which 

is a sign of large tally uncertainties. The uncertainties in 

the MESH30 case can be minimized by using higher 

number histories (MESH200 case), which obviously 

requires more computational resources, and the result 

compared to FET relative axial power is shown in the Fig. 

2(b). The Fig. 2(b) shows improvements in which there 

are fewer and lower magnitude of the ripples compared 

to those in Fig. 2(a). The root mean squared (RMS) 

differences from FET against MESH30 and MESH200 are 

1.6% and 0.9% respectively. 

 

3.3 Radial Power Tally 
 

As for the radial power tally, the particles were 

sampled into 144,000 space bins (which consist of 40, 72 

and 50 meshes in the radial, azimuthal and axial 

directions respectively) of the 3.1% enriched fuel pin 

geometry only.  The relative radial power of the 3.1% 

enriched fuel pin at axial position 𝑧 = −10 cm from 

each case is shown in the Fig. 3. 
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(a) 

 

 
(b) 

Fig. 2. FET case relative axial power compared against (a) 

MESH30, and (b) MESH200 cases 

 

As shown in the Fig. 3(a), FET can provide a very 

smooth distribution of the radial power tally. Unlike FET, 

the traditional mesh tally solutions, with the same 

number of histories, cannot produce a smooth tally due 

to large uncertainties. When the number of histories is 

increased (MESH200), the tally distribution is smoother 

but still showing large uncertainties at the periphery. The 

RMS difference of the tallied radial power of the FET 

against MESH30 and MESH200 are 3.8% and 1.7% 

respectively. 

 

The running time of FET is slightly lower compared 

to the conventional mesh tally for the same number of 

histories because MCS must construct Legendre and/or 

Zernike polynomials for every collision at given FET 

regions. However, FET produce a very smooth tally 

distribution and generally with lower standard deviations 

(see next section) when the tally must be done in small 

space bins. When number of histories is increased to 

achieve smoother distribution (MESH200 case), the 

running time raises by eight folds. 

 

3.4 Standard Deviation 
 

In this section, the standard deviations of the FET will 

be compared against those from conventional mesh tally. 

The FET standard deviation calculations require the 

calculations of the covariance matrix of the individual 

coefficients' standard deviations. That because their 

standard deviations are correlated. However, the 

calculations of covariance matrix during MC simulations 

are computationally expensive, thus this approach is 

counterproductive to the objective of the FET. Therefore, 

only for purpose of this test, we ran an identical problem 

30 times in MCS using different random number seeds 

to calculate the real standard deviations of the tallied 

quantities. The same lattice problem will be used and the 

standard deviation for the axial power of the 3.1% 

enriched fuel pin will be calculated.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 3. Relative radial power tally of the (a) FET, (b) MESH30, 

and (c) MESH200 cases 
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Table II: Running time comparisons 

Cases Running time relative to FET 

FET 1 

MESH30 0.96 

MESH200 8.34 

 
Table III: Cases to compare standard deviation 

Cases Tally type Number of 

axial mesh 

FET100 FET 100 

FET1000 FET 1000 

MESH100 Conventional mesh tally 100 

MESH1000 Conventional mesh tally 1000 

 

 

 
Fig. 4. Axial power tally standard deviations comparisons 

between FET and conventional mesh tally. 

 

Table III lists four cases to compare the standard 

deviation from each case. All cases use 25 inactive 

batches and 150 active batches and 50,000 histories per 

batch. Fig. 4 clearly shows that FET uncertainties are 

insensitive to the mesh sizes. Conversely, the 

conventional mesh tally standard deviation highly 

depends on the mesh size. The mesh tally standard 

deviation reduces approximately only by half when the 

mesh size is increased 10 times. Therefore, if one needs 

very localized and smooth distribution of the tallied 

quantities, then FET is preferred over the conventional 

mesh tally. In this perspective, FET also can be seen as a 

variance reduction method. 

 

 

4. Conclusions 

 

FET has been successfully implemented into the MCS 

code. By using FET, the MCS code can produce a very 

smooth tallied quantities and generally with lower 

standard deviation if the tally shall be done in small cells 

or meshes. Further development to implement FET 

coupled thermal-hydraulics code to perform reactor 

multi-physics calculations is underway. 
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