

KEPCO International Nuclear Graduate School

Fuel Batch Optimization for Extra Longer Initial Core Design of APR1400

[Umarov Shokhmirzo, Jungseon An, C.J. Hah]

I. Introduction

- Background
- Objective

II. Initial core design methodology

- FMNG: Evaluation of core average enrichment and the total number of BA rods
- EA: Optimization of batch average enrichment and number of FA per batch
- SA: FA configuration Core loading pattern determination

III. Result: Extra long initial core model for APR1400

IV. Summary

Introduction

Initial Core Design

- Loading pattern (LP) search and design is one of the most critical paths in Nuclear design.
- Most of the research on LP determination has focused on the minimization of maximum pin peaking factor (FXYP) and increasing burnup (BU).
- The most important factors are the number of feed FAs and their enrichment.
- The research on the evaluation of the number of feed FAs and fuel enrichment is hadn't been found and a systematic method to determine the optimum value of these two parameters is proposed in this study.

Extra Long Fuel Cycle (24 month)

- Increase in discharge burnup (BU)
- Increase in energy production
- Reduce outage costs by reducing the number of refueling outages during the operating lifetime of a plant
- Decrease the fuel cycle cost
- Enhance energy planning (refueling will be held in one season)

- This study aims :
 - I. Produce a cost-efficient, high burnup (24 GWD/MTU) initial core model for APR1400
 - **II.** Propose a three-step methodology for the Initial Core Design:
 - FMNG to determine the core average enrichment satisfying utility requirement
 - EA to determine batch average enrichment satisfying FMNG
 - SA to determine an optimum LP

II Initial core design methodology:

FMNG: Evaluation of core average enrichment and number of BA rods

Initial Core Design:

- What should be the core average enrichment?
- How many BA rods are required to reduce CBC?

II. FMNG: EVALUATION OF CORE AVERAGE ENRICHMENT AND NUMBER OF BA RODS

Fuel Management Net Graph is a **Simple** and **Intuitive** tool for the evaluation of:

- Cycle length VS core average enrichment
- Total number of BA rods for desired CBC at BOC

II. FMNG: EVALUATION OF CORE AVERAGE ENRICHMENT AND NUMBER OF BA RODS

Table: FMNG verification

Case #		MAS	FER-3		FM	ING	Δ (MASTER-FMNG)		
	# BA rods	BU	CBC	w/o %	CBC	BU	CBC, ppm	BU, MWD/kgU	
1	1766	18.41	832.85	2.72	835.00	18.30	2.15	0.11	
2	1751	18.90	919.00	2.79	915.00	18.90	4.00	0.00	
3	2632	23.98	1230.47	3.41	1230.00	23.95	0.47	0.03	
4	2668	24.03	1180.00	3.41	1185.00	24.00	5.00	0.03	
5	3032	24.08	877.00	3.41	880.00	24.10	3.00	0.02	

II Initial core design methodology:

EA: Optimization of batch average enrichment and number of FA per batch

II. EA: EVALUATION OF BATCH AVERAGE ENRICHMENT AND NUMBER OF BA RODS

Where do these numbers come from ?

Based on **Engineering Judgment** which is based on **long experience** !

What if I am not experienced enough for this judgment?

Assembly Type	Number of Fuel Assemblies	Fuel Rod Enrichment (w/o)	No. of Rods Per Assembly	No. of Gd ₂ O ₃ Rods per Assembly	Gd ₂ O ₃ Contents (w/o)
A0	77	1.71	236	-	-
B0	12	3.14	236	-	-
B1	28	3.14/2.64	172/52	12	8
B2	8	3.14/2.64	124/100	12	8
В3	40	3.14/2.64	168/52	16	8
C0	36	3.64/3.14	184/52	-	-
C1	8	3.64/3.14	172/52	12	8
C2	12	3.64/3.14	168/52	16	8
C3	20	3.64/3.14	120/100	16	8

Objective Function (fitness):

 $\sum_{i=1}^{\text{batch}} N_i \times f_i(F_1, F_2, F_3, F_4),$

 F_1 : ore purchase cost F_2 : enrichment cost F_3 :conversion cost F_4 : fabrication cost

 N_i : Number of FA in a batch i.

Figure: Schematic flowchart for Evolutionary algorithm

II Initial core design methodology:

SA: FA configuration and Core Loading Pattern Determination

Simulated annealing

- Easy implementation for nonlinear, combinatorial problems
- Proven effectiveness for LP determination
- LP search criteria minimum FXYP

Figure: Schematic flowchart for Simulated Annealing

III ______ Result:Extra long initial core model for APR1400

- Design requirements and criteria
 - ✓ Target cycle burnup
 - ✓ CBC at BOC
 - ✓ Design criteria
 - ✓ Reference core/fuel

- : 24 MWD/kgU
- : <1300 ppm
- : radial peaking factor < 1.55
- : APR1400/PLUS7

III. RESULTS: EVALUATION OF CORE AVERAGE ENRICHMENT AND NUMBER OF BA RODS

FMNG illustrates that for a given cycle length of 24 MWD/kgU the core average enrichment is determined at about 3.4 w-t % of 235U while CBC is 1250 ppm for the total number of poison rods of about 2600.

Constraints for Evolutionary Algorithm:

I.	Core average enrichment :	$3.4 \% \le w/o \le 3.5\%$
II.	Total number of FA:	241
III.	Number of FA per batch:	$40 \le N \le 70$
IV.	Batch average enrichments:	$2.5 \% \le A0 \le 3.0\%$
		$3.0\% \le B1 \le 3.5\%$
		$3.5 \% \le C1 \le 4.0\%$
		$D1 \le 4.55\%$

Table: EA results satisfying FMNG and given constraints

Batch	A0	B1	C1	D1
Enrichment, w/o	2.72	3.00	3.53	4.55
Number of FAs	65	64	56	56

Enrichment zoning and absorber rod positions for assemblies A0, B1, C1, and D1

FAs specifications

Turno	# of Fog	23	5U w/o	# of	rods	# of BA rods	botch over w/o
Type	# 01 F as	High	Zoning	High	Zoning	8 w/o Gd	Datch avg. w/o
A0	65	2.87	2.37	176	52	8	2.72
B1	64	3.18	2.68	172	52	12	3.00
C1	56	3.74	3.24	172	52	12	3.53
D 1	56	4.81	4.31	172	52	12	4.55
Sum	241					2632	3.41

III. RESULTS: LP DETERMINATION

24

III. RESULTS: LP DETERMINATION

	Α	В	С	D	Ε	F	G	н	J	К	L	Μ	Ν	Р	R	S	Т
1						D1	D1	D1	D1	D1	D1	. D1					
2				D1	D1	D1	C1	C1	B1	C1	C1	D1	D1	D1			
3			D1	A0	C1	B1	A0	B1	A0	B1	A0	B1	. C1	A0	D1		
4		D1	A0	B1	A0	A0	B1	C1	B1	C1	Β1	AC) A0	B1	A0	D1	
5		D1	C1	A0	B1	C1	C1	A0	C1	A0	C1	C1	. B1	A0	C1	D1	
6	D1	D1	B1	A0	C1	B1	A0	B1	A0	B1	A0	B1	. C1	A0	B1	D1	D1
7	D1	C1	A0	B1	C1	A0	B1	A0	C1	A0	B1	AC) C1	B1	A0	C1	D1
8	D1	C1	B1	C1	A0	B1	A0	B1	B1	B1	A0	B1	. A0	C1	B1	C1	D1
9	D1	B1	A0	B1	C1	A0	C1	B1	A0	B1	C1	AC) C1	B1	A0	B1	D1
10	D1	C1	B1	C1	A0	B1	A0	B1	B1	B1	A0	B1	. A0	C1	B1	C1	D1
11	D1	C1	A0	B1	C1	A0	B1	A0	C1	A0	B1	AC) C1	B1	A0	C1	D1
12	D1	D1	B1	A0	C1	B1	A0	B1	A0	B1	AO	B1	. C1	A0	B1	D1	D1
13		D1	C1	A0	B1	C1	C1	A0	C1	A0	C1	C1	. B1	A0	C1	D1	
14		D1	A0	B1	A0	A0	B1	C1	B1	C1	B1	A) A0	B1	A0	D1	
15			D1	A0	C1	B1	AO	B1	A0	B1	AO	B1	C1	AO	D1		
16				D1	D1	D1	C1	C1	B1	C1	C1	D1	. D1	D1			
17						D1	D1	D1	D1	D1	D1	D1					
						T		.l. 1	1	1-	~	40.0					
						L	11g	n.	iea	IK	CO	re					

Table: Summary for candidate LPs

Candidate	High leak	Lower leak	DCD
Core average enrichment, 235U w/o	3.4	2.72	
Batch size	4	3	
Cycle BU, MWD/kgU	23.97	24.53	17.51
Total number of BA rods	2632	2632	1680
Maximum FXYP	1.52	1.52	1.59
CBC at BOC, ppm	1230	1290	817
Fuel cost, Cents/kWhe	0.94	0.92	1.02

25

- Proposed core design process consists of three steps: core average enrichment determination and number of BA rods, batch size and enrichment determination, loading pattern search;
- In this process, FMNG is generated using a full core calculation to determine various core average enrichments depending on cycle length. The FMNG suggests possible candidates for a target core average enrichment and a number of BA rods satisfying a given cycle length;
- The batch size and enrichment is calculated using the evolutionary algorithm to minimize the fuel cost;
- The optimum LP search performed using SA;
- The initial core design generated by the proposed methodology satisfied design requirements;
- Finally, the fuel cost comparison of candidate cores to reference core showed a decrease of about 10 %.

THE END