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1. Introduction 

 
It is known that photoneutrons can be produced from 

photonuclear reactions of delayed photons emitted from 

decays of fission products with reactor core components. 

Deuterium and beryllium [1] are the major photonuclear 

isotopes because of their low threshold energy of 2.23 

MeV and 1.67 MeV, respectively. The effect of delayed 

photoneutrons on the reactor dynamics has been studied 

[1-4] in research reactors that contain deuterium or 

beryllium in the coolant or reflector region. 

One of the related topics is to develop a point kinetics 

model considering the delayed photoneutrons. In most 

of the previous studies [2-4], the delayed photoneutrons 

are treated as additional delayed neutron groups in the 

conventional form of the point kinetics equation (PKE). 

Jatuff et al. [5] derived neutron/photon-coupled PKE 

starting from an exact form of the neutron/photon-

coupled transport equations. For the simplicity of its 

derivation, they applied the instantaneous photon 

transport approximation which assumes that the photon 

flux reaches its equilibrium almost immediately. 

This paper aims to derive a PKE considering delayed 

photoneutrons without any approximations with clear 

definitions of adjoint weighting functions, starting from 

the exact neutron/photon-coupled transport equations. 

The proposed PKE can be used to accurately analyze 

the reactor dynamics for a reactor core where the 

photoneutron generation cannot be neglected. 

 

2. Methodology 

 

2.1 The exact neutron/photon-coupled Boltzmann 

transport equations 

 

The neutron/photon-coupled transport equations and 

delayed neutron/photon precursor density equations can 

be expressed as  
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The definition for operators used in Eq. (1) to Eq. (4) is 

described in Eq. (5) to Eq. (12).  denotes the angular 

flux, ( , , , )r E t  , and subscripts n and  mean that the 

corresponding variables are for neutron and photon, 

respectively.  In the same manner, subscripts (n) and 
(n) mean the operator or variables are for that reaction. 

n

ic and jc
 are i-th group neutron precursor density and 

j-th group photon precursor density. The operator  is 

for the photoneutron production from photon and 

( , )

n

n M  is for the photons induced from neutron reaction 

except for fission.   is the total photoatomic cross 

section which is the sum of the cross section of 

photoelectric reactions, pair productions, and Compton 

scattering.
c

 denotes Compton scattering. 
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2.2 Definition of photoneutron production operator  

 

For the further derivations, Eq. (2) can be written as 

Eq. (13) by defining the total cross section of a photon 

as Eq. (14) and grouping the photon production term 

into Compton scattering term in Eq. (16) and neutron 

originated term in Eq. (17).   
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By applying the method of characteristic, Eq. (13) can 

be written as   
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By introducing an integrating factor on both sides of the 

equation to solve this integral equation, we can yield the 

photon flux as the following expression. 
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We can now define photon collision density as 

( , , , ) ( , , ) ( , , , )tr E t r E t r E t
    =   and follow the 

conventional step of getting Neumann series solution as 

we did while solving the neutron collision density 

equation. Finally, we yield Eq. (20) when P=(r,E,,t). 

Here, it can be noted that jK 
is a multiplication of T  , 

sC 
 which are transition kernel and scattering collision 

kernel of the photon.  
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Now let us introduce Eq. (20) into the photoneutron 

production term Γ in Eq. (1) following the procedure 

described in Eq. (22), and define the photoneutron 

production operator D as Eq. (23). By revisiting the 

definition of nQ →  described in Eq. (17), Eq. (24) can 

be derived. It can be noted that the photon transport 

equation is merged with the neutron transport equation 

successfully by exploiting the Neumann series solution 

of the photon transport equation. 
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2.3 Derivation of point kinetics equations considering 

photoneutrons 

 

Introducing the relation in Eq. (24), Eq. (1) can be 

expressed as 
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As in the conventional derivation of PKE, we can 

multiply Eq. (25) by adjoint neutron flux *

0 , separate 

the neutron flux into an amplitude function P(t) and 

shape function ( , , , )r E t  with a normalization 

condition, which yields Eq. (28). 
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Let us define the normalization constant I as Eq. (29) 

and divide both sides of Eq. (28) with it.  
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Finally, the PKE considering delayed photoneutrons can 

be obtained as  
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In the same manner used to derive Eq. (28), the PKE for 

delayed neutron and delayed photon precursor can be 

obtained as 
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It can be noted from Eq. (31) that the neutron 

production term from fission, F(t), includes the 

contribution of photoneutron production from fission 

gammas. Eq. (34) gives a clear physical meaning of 

effective delayed photoneutron fraction as a delayed 

photoneutron production weighted with the neutron 

adjoint flux among the total neutron production from 

fission.  

 

3. Conclusions and Future Work 

 

The PKE considering photoneutrons is derived from 

neutron/photon-coupled transport equations without any 

approximations. The photon transport equation is 

successfully merged with a neutron transport equation 

by deriving its Neumann series solution and introducing 

the delayed photoneutron production operator.  

The MC algorithm for the estimation of kinetics 

parameters can be easily obtained from the developed 

PKE in this paper [6]. As photonuclear physics is 

recently implemented in McCARD [7], delayed neutron 

fraction and delayed photoneutron fraction can be 

calculated during a forward k-eigenvalue mode 

simulation. After implementing a function to handle 

delayed photon production in every fission event, we 

plan to apply it to reactor dynamics analysis in research 

reactors. 
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