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1. Introduction Therefore, in this paper, unlike the existing melho
we try to predict the welding residual stress using

Nuclear power plants (NPPs) consist of numerous artificial intelligence (Al) technology, which has
components and pipes, and many welding processes ar'écently been in the spotlight with the adventraf 4"
performed to connect them. As NPPs age, there aréndustrial revolution. SpeCiﬁca”y, the prediCtiOQf
many reports of reactor coolant leaks due to crackswelding residual stress is attempted using a deepyf
occurring in these welding areas. This is due ® th heural networks (DFNN) where the rule-dropout
occurrence of primary water stress corrosion cragki technique is applied. ABAQUS, a finite element
(PWSCC). It is known that such PWSCC occurs when analysis code, was used to build data for Al trajni
1) sensitive material, 2) corrosive environmenti 8y  here, for modeling, 1) the shape of the pipelirjeth2
residual stress exist simultaneously. NPPs satisfgf ~ Welding heat input, 3) the yield strength of theldirey
the above conditions for the following reasonsstrian ~ base material, and 4) the constraint of the enthef
Inconel-based welding material called Alloy 82 or Pipeline were considered. As a result, 6300 welding
A”Oy 182 was Comm0n|y used for the cracked We|d|ng residual stress data were obtained from 150 ar$a|ysi
areas [1]. These welding materials are known to beconditions. The rule-dropout technique and genetic
sensitive materials. Second, NPPs are corrosivedlgorithm were applied to optimize the welding desil
according to the extreme environment of high Stress prediction model. A root mean square (RMS)
temperature, high pressure, and high radiatiorallyin error and relative error were used to evaluate the
welding residual stress is generated accordingheo t Performance.
local heating and cooling that occurs during weddin
here, residual stress is evaluated as a very import 2. Deep Fuzzy Neural Networkswith Rule-Dropout
factor that causes PWSCC when it is difficult to
improve the material corrosiveness of components an  This section describes the DFNN with rule-dropout
the environment under the operating conditions@Ps. ~ Method used to develop the welding residual stress

In general, residual stress is evaluated for i ~ Prediction model. In addition, the genetic algaritand
evaluation of the structural integrity of weldedtgaof  rule-dropout technique used to optimize the welding
NPPs; that is, residual stress evaluation is pexdrto  residual stress prediction model is explained.
evaluate fitness-for-service (FFS) [2]. There areesal
methods for evaluating residual stress. The rebidua 2.1 Deep Fuzzy Neural Network
stress evaluation methods are largely divided ihto
local destructive technology, 2) non-destructive The DFNN method is an extension of the fuzzy
technology, and 3) finite element analysis. Fitse  heural networks (FNN) method. In general, deep
local destructive technique includes hole drilling, learning has the effect of improving performancehes
Sectioning, contour method, etc. Second, the non_number of Iayers increases; here, the DFNN method
destructive technique includes x-ray diffractioautron ~ treats the FNN as one layer. In other words,
diffraction, ultrasonic technique, etc. The presdwo  Performance improvement can be induced by
residual stress evaluation methods have disadvemtag configuring and deploying the FNN as a single medul
such as |arge dispersion of measured Va|ue5, space The FNN method can be described as a combination
constraints,  surface-oriented measurement, andof fuzzy inference and artificial neural networksizzy
relatively excessive time and cost. Finally, theité  inference is the process of mapping a given inpurt
element analysis method is a technique to evalinete ~ OUtput using fuzzy set theory. In this paper, a<3&n
residual stress numerically, unlike the previoushmgs. ~ membership function is used to construct a fuzzy se
The finite element analysis method is being acyivel The Gaussian membership function is expressed as Eq
applied to derive the welding residual stress ithistion (1); here, it is important to optimize the parametg
in terms of FFS evaluation because of the shortegsni and s;j that determine the distribution of Gaussian
of the previous two methods. Nevertheless, theefini membership [3].
element analysis method is technically and
computationally difficult. Also, there are limitatis in @, (x, (K)) = g (i (0 /2] 1)
that simplification and idealization of shapes, eniai

behavior, and process parameter is inevitable. Once the Gaussian membership function is

determined, the inputs are assigned according ¢o th
fuzzy set. After that, the training proceeds by
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calculating the weights using the artificial neural  The optimization of the DFNN method includes a
network structure. genetic algorithm for parameter optimization andle-

Fig. 1 shows the structure of the FNN method, which dropout technique for training optimization.
consists of six layers. The layer related to fuzzy The genetic algorithm is responsible for optimizing
inference described earlier is the second layeterAf the parameters that determine the performance eof th
that, the third to fifth layers simulate the adiéil neural DFNN with rule-dropout method. The genetic
network structure. algorithm is the process of finding the optimal
parameter by selecting, crossing, and mutating the
candidate groups of each variable in general. B th
DFNN method, the genetic algorithm optimizes for 1)
Gaussian membership functiomy @nds;), 2) fuzzy rule
number, and 3) FNN module number.

The rule-dropout technique applied to the DFNN
method is similar to the dropout technique commonly
used in deep learning [4]. The purpose of applying
rule-dropout technique is to prevent overfitting
problems that may occur during Al training. The
overfitting problem means that the performanceten t
training data used for Al training is high, but the
performance on the test data used for Al evaluason
low; that is, it suggests that the generalization
performance of Al is lowered. The rule-dropout
technique adjusts the number of network nodes that
affect fuzzy inference performance to optimizertirag.
Specifically, it prevents over-adaptation of newdiy
Fig. 1. The structure of FNN method (FNN module). artificially disabling the number of nodes in theyér

that exists between the input layer and the ougyer.

The DFNN method is constructed by deeply In general, DFNN methods tend to improve in
deploying this FNN method as one module. Fig. 2 performance as the number of FNN modules and fuzzy
shows the structure of the DFNN method, charaatdriz rules increases. On the other hand, as the network
in that the results of previous FNN module are trjpu  structure becomes more complex, there is a risk of

the directly connected next FNN module. overfitting. The rule-dropout technigque receives
inactive node candidates determined from the geneti
I o e algorithm and deactivates some of the nodes in the
X @—) ) . N initially configured network. This process is refezh
whenever an FNN module is added, and the optimal
X, @ ] ) T number of fuzzy rules is determined. Because of this
: g optimization process, each FNN module has the same
" 2™ 3 G" G . .
NN FNN FNN Y or different optimal number of fuzzy rules. In othe
X Qo Nl | Nl || Nl | ...y Mo words, the genetic algorithm and rule-dropout téphe
X @— - . NN are combined to optimize the number of fuzzy rules.
The rule-dropout technique helps prevent overfittiry
e disabling some nodes in a complex network structure
| Y1 r | Y, r | 9 r |9G‘1r

3. Data Acquisition

Fig. 2. The structure of DFNN method. . . . .
In this section, ABAQUS, a finite element analysis

The performance of the DFNN method is closely €0de, was used for data acquisition. In additios 1
related to the structure of the DENN method. Sitee analysis conditions were utilized to build a datebaf
DFNN method is a combination of fuzzy inference and Welding residual stress from various welding caods.
artificial neural networks, each feature can deteenits ~ 1he 6300 constructed data is divided into training,
performance. For fuzzy inference, this is the Giamss verification, and testing data for Al training and
membership function and fuzzy rules. In the case of assessment.
artificial neural networks, the number of FNN maekl

corresponds to this. 3.1 Finite Element Analysis

2.2 Optimization technique of DFNN method ABAQUS, a finite element analysis code, was used
to obtain welding residual stress data [5]. A diskir

weld joint between the nozzle and the pipe was
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simulated for ABAQUS modeling. For the detailed

Earlier, it was mentioned that simplification and

material structure, SA508 ferritic steel and TP316 idealization of shape are inevitable in finite eésm

austenitic stainless steel were applied to the lecanzd
pipe, respectively. In addition, Alloy 82 and Alldg2
were used as welding base materials for the weid jo
between the nozzle and the pipe. The detailed rimapel
structure is expressed in Fig. 3.
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Fig. 3. Welding part of dissimilar metals and estiion paths
in welding area for data acquisition [5].

The following parameters were selected to simulate

material behavior; the parameters are 1) shapdeof t
pipeline, 2) end section constraint, 3) weldingtheput,
and 4) yield stress of weld metal. Table | shows th
conditions for each parameter.

Table I: Conditions for analyzing welding residutiess

Ro (mm) RN (mm) Ro/t
Shape of the 205.6 300.10 4.8778
pipeline 205.6 271.75 6.8763
205.6 256.80 8.8735
End secyon Restrained Free
constraint
Pass 1 others
' 0.49764 1.2690
Welding 0.55985 1.4277
heat input,
H (kJ/s) 0.62205 1.5863
0.68426 1.7449
0.74646 1.9036
192.33
Yield stress
of weld 203.06
metal, 213.70
224.38
o Pa
s MPa) 235.07

3.2 Data Composition for Al training

According to the previous material behavior
conditions, 150 analysis conditions were appliethgis
ABAQUS. In addition, a total of 6300 datasets were
obtained using these analysis conditions. The oéthi
data is used for training and evaluation of thevfdel.
The detailed data composition is shown in Tdble

analysis. However, this paper focused on the ptiedic
of welding residual stress using the DFNN with fule
dropout method. It is assumed that the obtaineitefin
element analysis results are accurate.

According to each condition, 1250 training data) 26
validation data, and 65 test data are divided. The
training data is used to train the DFNN model, #rel
validation data is used to check whether the tnging
working well (overfitting evaluation). In general,
training and validation data are collectively definas
development data. The test data is used to evalhate
performance of DFNN model developed as data
independent of these development data.

Tablell: Data composition according to each condition

End No. of
Path section Data type data
constraint point
Train 1,250
Restrained| Validation 260
Inside Test 65
path Train 1,250
Free Validation 260
Test 65
Train 1,250
Restrained| Validation 260
Center Test 65
path Train 1,250
Free Validation 260
Test 65
No. of total data point 6,300

4, Evaluation Result of Residual Stress

The results of the welding residual stress preaficti
model developed using the DFNN with rule-dropout
method were evaluated using the RMS error and the
maximum relative error. The performance of the DFNN
model according to the estimation paths (insidéh pat
and center path) is shown in Tabléd and IV,
respectively. When the end section constraint ¢ardi
in the inside path is restrained, the result evatliavith
the test data has an RMS error of 1.004%. When the
end section constraint condition is free, the tesul
evaluated with test data shows the RMS error of
1.736%. The evaluation result of the center path is
1.041% and 0.537% as a result of evaluation wish te
data when the end section constraint conditions are
restrained and free, respectively. Overall, the DFN
model developed by showing the RMS error within 2%
is judged to be sufficient for evaluating the welgli
residual stress.
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Tablelll: Performance of the DFNN with rule-dropout
model (inside path)

End RMS Relative
) max.
section Data type error
constraint (%) error
(%)
Train 0.808 4.958
Restrained| Validation 0.888 3.680
Test 1.004 3.455
Train 1.807 8.803
Free Validation 1.967 8.900
Test 1.736 7.469

TableIV: Performance of the DFNN with rule-dropout
model (center path)

End RMS Relative
) max.
section Data type error
constraint (%) error
(%)
Train 0.682 3.115
Restrained| Validation 0.744 3.394
Test 1.041 3.940
Train 0.417 2.007
Free Validation 0.454 2.178
Test 0.537 2.028

Figs. 4-6 shows the results of plotting the acfbhle
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Fig. 4. Performance evaluation result of DFNN witle-
dropout model based on shape of the pipeline.
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Fig. 5. Performance evaluation result of DFNN wiite-
dropout model based on welding heat input.
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Fig. 6. Performance evaluation result of DFNN witle-
dropout model based on yield stress of weld metal.

5. Conclusions

In this paper, we used artificial intelligence (A9
predict welding residual stress. For Al trainingg06
datasets obtained by using ABAQUS were used. Based
on the data, the model was developed using the deep
fuzzy neural network (DFNN) with rule-dropout
method. The developed DFNN model with rule-dropout
method shows good performance within 2% of root
mean square error. It is judged that it will begibte to
predict the welding residual stress well enougmgisi
the DFNN model. The predicted welding residualsstre
is sufficient to evaluate the integrity of dissianil
metals welding.
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