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1. Introduction 

 
After the Fukushima accident, the management of a 

severe accident becomes more important to prevent 

severe core damage, core melting, and consequential 

radiation leakage. Since the uncertainty in the severe 

accident progression is too large, a guideline rather than 

a procedure, so-called severe accident management 

guideline (SAMG) is provided for the accident 

management. According to the SAMG, when a severe 

accident occurs, the technical support center (TSC) is 

formed to evaluate a positive or negative impact of 

various mitigation strategies based on the current status 

of the nuclear power plant (NPP) and the available 

systems, and to determine an optimal strategy for the 

accident mitigation. However, in such a dangerous and 

rapidly changing accident situation, making a decision in 

a short time can cause a lot of burden and stress to the 

TSC staff and lead to human error. Therefore, the 

accident management support tool (AMST) is required 

to assist decision making during the accident situation [1]. 

The major functional requirements of the AMST are 

as follows: 

1) Track the current status of the NPP. 
2) Predict the accident progress for various accident 

mitigation strategies. 

3) Search for the optimal mitigation strategy based 

on the numerous prediction calculations. 

Various AMSTs have been developed, such as MARS 

[2] and SAMEX [3]. These AMSTs use the severe 

accident analysis code or accident database for predictive 

calculations. The severe accident analysis code can 

accurately predict the consequence of the accident 

progress, but it takes a long computing time. On the other 

hand, the accident database based on the probabilistic 

safety assessment (PSA) takes very short computing time. 

However, it requires many prediction calculations via 

severe accident analysis code to build the database, and 

only scenarios in the PSA can be treated. 

Therefore, a soft computing method for the predictive 

tool is required that can quickly calculate the accident 

consequence for various scenarios and mitigation 

strategies with acceptable accuracy. In the previous study, 

Na et al. (2004) applied the neural network to classify the 

accident scenarios and predict the timing of major events 

[4]. In this preliminary study, the authors apply a neural 

network to predict the reactor vessel failure time for 

various component failure cases. 

 

2. Methods 

 

2.1 Selection of Accident Scenario 

 

The total loss of component cooling water (TLOCCW) 

accident was selected to confine the list of failed 

component candidates. In the TLOCCW accident 

scenario, the safety-related equipment such as an 

emergency diesel generator and shutdown heat 

exchanger (HX) is not available due to the loss of the 

component cooling water. In addition, the pump seal 

cooling failure occurs first, and this is followed by losses 

of the high pressure safety injection (HPSI), the low 

pressure safety injection (LPSI), the charging pump 

(CHP), the containment spray system (CSS), and the 

motor-driven auxiliary feedwater (MDAFW). The seal 

of the reactor coolant pump (RCP) is also not cooled, so 

RCP seal loss of coolant accident (RCP seal LOCA) 

occurs. During the TLOCCW accident scenario, 7 

components those can be failed were selected as shown 

in Table I. Other engineered safeguards were assumed to 

operate passively. 

 

Table I Components those can be failed during 

TLOCCW accident scenario 

Component Name 

RCP seal LOCA 

HPSI 

LPSI 

CHP 

CSS 

MDAFW 

HX 

 

2.2 Data production via MAAP 5.03 

 

A total of 559 accident scenario input files were 

prepared and simulated via MAAP 5.03. The MAAP 

5.03 is the severe accident analysis code developed by 

EPRI[5]. OPR1000 is the target nuclear power plant for 

this analysis. During the 72-hour accident time, the 

failure time of the components in Table I was discretely 

sampled with 1-hour intervals. Each failure probability is 

0.5, so frequency distribution of the number of the failed 

components is expected to follow Poisson distribution as 

shown in Fig. 1.  The failure time is assumed as a uniform 

probability density function (PDF) except for the RCP 

seal LOCA. The failure time for the RCP seal LOCA was 

sampled from the log-normal distribution [6] as shown in 
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Fig. 2. The initial event was set as an RCP trip, and all 

accidents entered into severe accidents assuming that 

recirculation of the refueling water storage tank (RWST) 

is not available. 

 

 
Fig. 1 Frequency of the number of failed components. 

 

 
Fig. 2 Log-normal PDF of RCP seal LOCA failure 

time. 

 

2.3 Artificial Neural Network 

 

The multi-layer perceptron regressor of the scikit-

learn tool [7] was applied to predict the reactor vessel 

failure time. Table II shows the input features for the 

neural network, which are the failure times of the 

components, where 72 hours for the failure time 

indicates the non-failure of the component. In addition, 

the integer type flags were added in the input features, 

where 1 and 0 indicate the failure and the non-failure of 

the component, respectively. The failure times were 

standardized to remove the scale effects for the neural 

network fitting. The hyperparameter fitting was 

performed to find an optimal performance of the neural 

network using 10 sets of cross-validations. Table III 

shows the optimized hyperparameter used in this study. 

The test set was set to 20% of the total data set. 

 

Table II Example input features of neural network 

 

RCP 

seal 

LOCA 

HPSI LPSI CHP CSS HX 
MD 

AFW 

Failed 

time 

(hr) 

1 72 55 72 72 4 72 

Failure  

or not 
1 0 1 0 0 1 0 

Table III  Optimized hyperparameter for multi-layer 

perceptron regressor 

 Activation Alpha 

Hidden 

layer 

sizes 

Max 

iteration 
Solver 

Hyper- 

parameter 
logistic 5e-5 50 100 lbfgs 

 

3. Results and Discussion 
 

After hyperparameter tuning, the performance of the 

neural network was verified through the test set. The root 

mean square error (RMSE) is 4.82% (3.5 hr), and the 

detailed predicted data distribution and trend line are 

shown in Fig. 3. 
 

 
Fig. 3 Predicted vs. calculated RV failed time data with 

trend line. 
 

The predictions for the early RV fail (group A in Fig. 

3) show good performance, while those for the late RV 

fail (group B in Fig. 3) show bad performance. The 

reason is that the training data are clustered in the group 

A rather than group B. As shown in Fig. 4, among 559 

datasets, 516 datasets are located in the 0.3-0.4 interval 

(group A), and there are only 37 datasets in the 0.5-0.6 

interval (group B). The training datasets are quite biased 

to group A. Therefore, more accurate results can be 

obtained if training datasets are equally distributed. In 

addition, if the prediction of the neural network can be 

improved by using the classifier to distinguish between 

the early and late RV failures. 

 

 

Group A 

Group B 
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Fig. 4 Distribution of normalized RV failed time results 

 

4. Summary and Further Study 
 

The RV failure time for various component failures in 

an NPP were predicted using the artificial neural network. 

The input features were components failure time and 

integer type flag to distinguish between the failure and 

the non-failure. The early RV failure results show good 

prediction, while the late RV failure results are not good 

due to the biased training datasets. To improve the 

prediction accuracy, refinement of the training dataset 

and the classifier to distinguish between the early and late 

RV failures can be considered in the further study. 
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