

Economic Analysis of Liquid CO₂ Energy Storage System Integrated to a Conventional PWR

Yong Jae Chae, Jeong Ik Lee* Department of Nuclear and Quantum Engineering, KAIST *Corresponding author: jeongiklee@kaist.ac.kr

KAIST Nuclear & Quantum Engineering

Introduction

- Recently, the energy production from renewable energy (RE) sources is increasing globally to reduce greenhouse gas emission, but RE has unexpectable intermittency during power generation. This issue can be alleviated by load-following operation of a nuclear power plant (NPP).
- Energy Storage System (ESS) attached to the power cycle can solve this issue. Among the various ESSs, compressed CO₂ energy storage (CCES) is promising ESS due to high round-trip efficiency (RTE) and simple layout.

 Startup 'Energy Dome' has scored its first commercial licensing

(4) I_t and M_t are can be calculated from the purchased equipment cost (PEC) and the table about ratio of LCOE details

(5) In this system, the compressor is driven by only steam turbine. However, PWR power production will be decreased during the charging process of LCES. Thus, F_t is the opportunity cost of unproduced electricity during the charging process.

(6) E_t is used from the previous thermodynamic study of LCES

Component cost model

The cost model is used with scaling parameters(SP) of each components.
(1) Heat exchanger (SP : Overall conductance)

 $C_{HX} = 49.45 U A^{0.7544}$

agreement for its carbon dioxidebased energy storage solution, with Italian power engineering firm 'Ansaldo Energia'.

CHARGE

- Layout and flow CCES of 'Energy Dome'
- CCES had quite low energy density. For higher energy density, liquid CO₂ energy storage (LCES) with PWR was studied thermodynamically as shown below Figure.
- In order to evaluate the feasibility further, the economy of the proposed system should be evaluated and understand the associated cost.

Layout of liquid CO₂ energy storage system(LCES) integrated to PWR steam cycle

 Thus, in this paper, economic analysis of a liquid CO₂ energy storage (LCES) integrated to a conventional PWR are studied. (2) Compressor & Turbine (SP : Power consumed and produced)

 $C_{comp} = 1,230,000 W_{comp}^{0.3992}$ $C_{Turb} = 182,600 W_{Turb}^{0.5561}$ (3) Tank (SP : Volume of tank)

$$C_{Tank} = 40420 V_{Tank}^{0.506}$$

(4) Others

150

0.5

15

Minimum pressure of CO₂, MPa

LCOE vs Minimum and maximum pressure

- Since steam turbine and motor for this specific configuration do not have cost model, the six-tenth law is applied

C_1	$\left(\frac{V_1}{V_1}\right)^{0.6}$
$\overline{C_2}$	$\left(\overline{V_2}\right)$

Equipment	Reference cost	Capacity
Steam turbine	10M\$	15MW
Motor	0.75M\$	15MW

✓ Cycle condition and Parameters

	Parameters	Value		Unit	
	Charging time	8		hr	
	Discharging time	8		hr	
	Lifetime	30		yr	
	Discount rate	5		%	
	Nuclear price	62		\$/MWh	
	Parameters	Range of	Variation	Unit	
	Pressure of low-pressure reservoir	0.6-3.4		MPa	
	Pressure of high-pressure reservoir	20-30		MPa	
	Res	sults			
220	Maximum pressure of CO ₂ (MPa)				
	20		Cost ra	tio of Components	
210		HX 2phase charging	11°	% 4%	
		HX 2phase discharging			
200		HX gas charging	10%		
		CO2 HP Tank			
190		CO2 LP Tank	< 1%		
400		2phase Therminol HT Tank 2phase Therminol CT Tank			
180		Gas Therminol HT Tank	9%		47%
170		Gas Therminol CT Tank			
170		CO2 Turbine	< 1%		7
160		Steam Turbine	2% ≼21%		

Economic analysis

Levelized Cost of Energy

- In this paper, levelized cost of energy (LCOE) is used among various indices of economic analysis.
- (2) LCOE is a measure of the average net present cost of electricity generation for a generating plant over its lifetime.
- (3) The ratio between all the discounted costs over the lifetime of an electricity generating plant divided by a discounted sum of the actual energy amounts delivered as seen in the following equation

 I_t : capital investment, M_t : operation and maintenance cost, F_t : electricity cost, E_t : electrical energy generated, r: discount rate, n: lifetime of power plant

Account	Value				
Total Cost Investment (TCI) = Direct cost + Indirect cost					
Direct cost (DC)					
Purchased Equipment Cost (PEC)	Sum of all components cost				
Purchased equipment installation	20% of PEC				
Piping	10% of PEC				
Instrumentation & control	7% of PEC				
Electrical equipment and materials	10% of PEC				
Land cost	10% of PEC				
Civil, structural and architectural	30% of PEC				
Service facilities	30% of PEC				
Indirect Cost (IC)					
Engineering and supervision	9.8% of DC				
Construction cost & contractors profit	11.9% of DC				
Contingency cost	15.0% of DC				
Operation & Management Cost (O&M) = Fixed + Variable O&M					
Fixed O&M (FOM)	1.29% of TCI				
Variable O&M (VOM)	9.0% of FOM				
 Ratio of LCOE details 					

Optimization point	Value	Unit
Pressure of low-pressure reservoir	0.6	Мра
Pressure of high-pressure reservoir	30	Мра
LCOE	160	\$/MWh

3.5

Motor

10%

Cost ratio of components

Summary and Future works

✓ From the result of the liquid CO₂ energy storage economic analysis, it is shown that as the maximum pressure increases and the minimum pressure decreases, LCOE decrease.

✓ The lowest LCOE is expected to be \$160/MWh.

2.5

- The optimized operating conditions have the highest RTE and energy density, and the lowest LCOE.
- Further investigation will commence soon regarding possibility of further decreasing the LCOE of LCES with various layouts as well.