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1. Introduction 

 

 

Radiation damage in nuclear materials has been 

studied for many decades using experiment and 

computer simulation. However, it is difficult to 

investigate collision dynamics by experiment due to the 

small space and short time in which each collision 

cascade process occurs [1]. In the experiment, only 

defects that survived and developed through various 

thermal processes such as migration, recovery and 

clustering can be observed, and the details of the primary 

radiation damage processes cannot be known. 

Therefore, various computational methods have been 

used to simulate the primary radiation damage processes, 

such as Binary Collision Approximation (BCA), Kinetic 

Monte Carlo (KMC), and Molecular Dynamics (MD) [2].  

Among them, classical MD (CMD) has been widely used 

[3,4] because it can deal with the system size and time 

scales required for the simulation of primary damage 

processes in detail. However, the previous studies [5,6] 

show that the threshold displacement energy (TDE) and 

cascade damage simulations by CMD are greatly 

dependent on the potential model. 

In bcc-Fe, which is important as the base material of 

ferritic/martensitic steels, the C15 type cluster is highly 

stable unlike other bcc metals [7]. The energy landscape 

of C15 clusters is very complicated due to the 

involvement of a larger number of vacancies and self-

interstitial atoms (SIAs) than the parallel-dumbbell 

cluster with the same cluster size (Fig. 1). This 

complicated energy landscape makes hard to correctly 

simulate the stability of C15 clusters with existing 

embedded atom method (EAM) potentials. 

 

 
Fig. 1. Structure of interstitial cluster in bcc lattice with 

cluster size 2. The atoms in perfect crystal position are 

marked by red spheres, SIAs by blue spheres, and 

vacancies by orange cubes. (a) parallel dumbbells 

aligned in the <111> direction. The cluster consists of 4 

SIAs and 2 vacancies. (b) C15 type cluster. The cluster 

consists of 12 SIAs and 10 vacancies. 

 

In the present study, we develop a potential model that 

accurately reproduces the stability of various radiation 

defects including C15 in bcc-Fe at a reasonably low 

calculation cost, aiming to realize high-precision 

radiation damage CMD simulations in the future. To 

obtain accuracy beyond that of existing EAM models, 

the moment tensor potential (MTP) [8], a type of 

machine learning potential, was adopted. 

 

 

2. Methods 

 

2.1. Reference data by DFT calculation 

 

In general, a machine learning potential model is 

constructed in reference to energy, force and stress data 

obtained by first-principles calculations. Thus, we need 

to first prepare the reference data set to reproduce the 

defect-related properties. For this aim, density functional 

theory (DFT) calculations with 3  3  3 and 4  4  4 

supercells containing 54 and 128 atoms, respectively, 

were performed. The energy, force and stress data of 

1257 configurations were gathered and used to construct 

an MTP model. Table 1 lists the reference data 

configurations classified into seven types. All DFT 

calculations were performed using Vienna ab initio 

simulation package (VASP) [9] with the projector 

augmented-wave (PAW) method [10]. The Perdew-

Burke-Emzerhof (PBE) exchange correlation functional 

[11] was utilized. The semi-core potential with 14 

valence electrons (Mg3p64s13d7) was used. The 4  4  

4 and 3  3  3 Monkhorst-Pack grid k-point samplings 

were used for 3  3  3 and 4  4  4 supercells, 

respectively. 

 

Table 1. Details of each reference data. Ntraj is the 

number of trajectories/configurations, and Natom is the 

number of atoms for each system. 

System type Ntraj Natom Type 
Temp. 

[K] 

Perfect 370 54 Dynamic 
300-

2100 

Isotropic 

Deformation 
100 54 Static - 

Shear 

Deformation 
50 54 Static - 

Defects 

(SIA, Vac.  

Fixed Vol.) 

480 
45-59 

, 130 
Dynamic 

300, 

600, 

1000 
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127 Static - 

Defects 

(SIA, Vac.  

Relaxed Vol.) 

30  Static - 

Defect 

Migration 
80 53-55 Static - 

Liquid 20 54 Static - 

Total 1257    

 

 

2.2. MTP model construction 

 

An MTP model [8] was constructed using the energy, 

force and stress data prepared by the DFT calculation as 

the fitting target. MTP uses polynomial basis functions 

for the radial component and tensor-form basis functions 

for the angular component. The size of basis functions is 

controlled by a single parameter called level. Increasing 

the level is expected to increase the accuracy of the MTP 

model, but at a higher calculation cost. Based on the 

results of several test calculations, we set level to 16. The 

minimum and maximum cutoff radii for the radial basis 

functions were 0.59 and 6.0 Å , respectively. 

We constructed four types of MTP models using 

different sets of reference data. The PM1 was constructed 

using default reference data with 3  3  3 supercells. 

PM2 and PM3 were constructed including relaxed SIA 

cluster structures and relaxed vacancy cluster structures, 

respectively. PM4 additionally includes a C15 cluster 

structure with 4  4  4 supercells to improve the 

description in the C15 cluster. The number of reference 

configurations for each PM is 1218 for PM1, 1236 for 

PM2, 1254 for PM3, and 1257 for PM4, respectively. 

In the training of MTP, fitting parameters are 

randomly initialized and optimized by an iteration 

method. Thus, each MTP gives different fitting quality 

and potential model performance depending on the initial 

parameters. In this study, for each PM type, we selected 

a representative MTP model from those constructed with 

four different initial parameters based on the fitting RMS 

error and the defect formation energy. 

 

2.2. Details of performance test 

 

For the model performance test, we calculated several 

material properties, such as lattice constant, elastic 

constants, and defect energies. All CMD simulations 

were performed using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) code [12]. The 

defect formation energy and the potential energy change 

in static displacement simulation, in which only one 

atom is displaced toward a neighboring atom, were 

calculated with 3  3  3 supercells (54 ± 1 atoms). These 

results were compared with DFT calculation results. The 

defect cluster stability was calculated with 30  30  30 

supercells (54000 + α atoms) and compared with the 

DFT results with 1024 atoms after the correction of the 

system-size effect [13]. For comparison with previous 

potential models, the EAM model developed by Ackland 

et al [14], which is noted as AM04, was used. 

 

 

3. Results and discussion 

 

3.1. Fitting quality 

 

The RMSEs in energy/force/stress from the DFT 

calculation for constructed MTP models are presented in 

Table 2. Good agreement with DFT is observed.  

 

Table 2. RMSEs from the DFT calculation for four MTP 

models. 

 PM1 PM2 PM3 PM4 

Energy (meV/atom) 5.261 4.967 5.647 5.564 

Force (eV/Å ) 0.112 0.105 0.107 0.099 

Stress (GPa) 0.691 0.684 0.789 0.691 

 

 

3.2. Material properties 

 

The results of the performance test on the lattice 

constant, bulk modulus, and point defect formation 

energies are shown in Table 2. The MTP models 

reasonably reproduce the DFT results for all quantities. 

As seen in the improved agreement with DFT from PM1 

to PM4, the accuracy of the defect formation energy was 

enhanced by the additional defect data. 

For defect cluster stability, Fig. 2 shows the defect 

formation energy differences between C15 and <111> 

parallel-dumbbell clusters calculated by the MTP models 

in the range of 2-6 cluster size. For example, for cluster 

size 4, the C15 cluster is composed of 18 SIAs and 14 

vacancies, while the <111> parallel-dumbbell cluster is 

8 SIAs and 4 vacancies. The results are compared with 

DFT and AM04. The MTP models show better 

agreement with DFT than AM04. The residual errors in 

the MTP models are considered to stem from the fact that 

large clusters were not included in the MTP training 

reference in the present study. To be specific, we 

included only 2-5 cluster sizes for <111> parallel cluster 

and 2-4 cluster sizes for the C15 cluster. The previous 

study by DFT calculation [7] predicts that the direction 

of the dumbbell defect in parallel cluster changes from 

<110> dumbbell to <111> dumbbell in more than the 

cluster size 5. The MTP may not have properly explained 

the change in the dumbbell direction. Another reason for 

residual errors is the difference in supercell size between 

DFT and MTP. A cluster of defects in a bulk crystal 

induces a long-range elastic field. This causes some 

errors in the calculation of parallel-dumbbell defect 

clusters even with the correction of the system size effect 

[13]. And although the effect of the system size on the 

C15 cluster was not systematically studied in the 

previous study, it can be expected that the error of the 

C15 cluster will be larger than that of the parallel cluster 

when considering the elastic field by extra defects 

involved in the C15 cluster. 
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A static displacement test with <135> direction 

displacement is presented in Fig. 3. <135> is a 

crystallographically open direction. The MTP models 

outperform AM04, and show good agreement with the 

DFT up to about 1.4 Å  of displacement. The poor 

performance at short distances is reasonable because the 

reference data for short distances were not prepared. If 

this MTP is to be used in collision cascade simulations, 

the short-range interaction needs to be modified, such as 

by connecting to the ZBL screened Coulomb interaction 

potential. The performance of MTP in collision cascade 

simulations will be investigated in the future. 

 

Table 3. Material properties obtained by DFT calculation 

and CMD calculations with four MTP models. a is lattice 

constant, and K is bulk modulus. 

 DFT PM1 PM2 PM3 PM4 

a (Å ) 2.83 2.84 2.84 2.84 2.84 

K (GPa) 192 181 167 169 174 

Defect formation energy (eV) 

Vacancy 2.16 2.11 2.09 2.10 2.15 

SIA <110> 4.43 4.5 4.39 4.43 4.39 

SIA<111> 5.25 4.9 5.02 5.33 5.24 

 

 
Fig. 2. Defect cluster formation energy difference 

between C15 and the parallel-dumbbell configurations. 

The parallel-dumbbell configuration with <110> 

dumbbell up to 4 SIAs and <111> dumbbell at larger 

cluster size are selected as the lowest energy defect 

configuration for parallel-dumbbell clusters. 

 

 
Fig. 3. Potential energy curves obtained by static 

displacement calculations along <135> direction.  

 

 

4. Conclusion 

 

In this study, MTP models of α-Fe were constructed 

by referring to the energy, force, and stress data 

calculated by DFT. The constructed MTP models 

reasonably agree with DFT reference data. In addition, 

we confirmed that the MTPs reasonably reproduce lattice 

constant, bulk modulus, and defect formation energies as 

well as the defect cluster stability and the potential 

energy change by a static displacement. These results 

show improved performance compared to the previous 

EAM potential. 

In future work, we will adjust the short-range 

interaction for a better description of collision cascade 

dynamics by adding specific potential energy data for 

short ranges. 
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