Impact of Non-uniform Fuel Flow on Reactivity in a Molten Salt Reactor

홍성택^{a,b}, 김용희^b, 장성동^b, 오태석^b, 이은혁^b KAERI^a, KAIST^b

2022. 05. 19.

PRESENTATION TITLE

CONTENTS

01 Introduction
02 Reactor model and Method
03 Results
04 Conclusions

01 Introduction

Molten Salt Reactor

- Molten Salt Reactor(MSR): One of the Generation IV International Forum (GIF) nuclear reactor systems
 - **♦** Low pressure operation
 - Liquid fuel
 - Accident resistance
 - High utilization

1 Previous Studies for MSR

Reactivity loss of Molten Salt Reactor

- The circulation of liquid fuel lead to reduction of the effective fraction of delayed neutrons.
 - MCNP Based Calculation of Reactivity Loss due to Fuel Circulation in Molten Salt Reactors(by Jozsef KOPHAZI etc.) – Figure 1
 - Effective Delayed Neutron Fraction for Fluid-Fuel System(by P. Ravetto etc.) Figure 2
- Need to realistic fluid dynamics model in order to perform accurate and reliable evaluations.

 Interactions between Fluid-Dynamics and Neutronic Phenomena in the Physics of Molten Salt Systems(by S. Dulla & P. Ravetto) – Figure 3

		т. і	.1. II					
Table II								
Ratios $\tilde{\beta}/\beta$ for different fluid velocities to the value for solid fuel, as a function of u for $T_R=0, z_s=0$ and $\sigma_s=H/10.$ k_{eff} values refer to solid-fuel systems.								
$u \text{ [cm/s]} \rightarrow 0 15 30 60 100 150$								
$k_{eff} = 0.95009$ 1.0 0.891 0.864 0.842 0.835 0.831								
$k_{eff} = 1.00001$	1.0	0.891	0.862	0.843	0.834	0.829		

<Figure. 2>

 Regime
 (pcm)

 No flow
 0

 Slug
 -115.8

 Parabolic
 -130.7

 ADF
 -140.2

 SOD
 -123.6

 SOI
 -110.8

 $\Delta \rho$

<Figure. 3>

Flow

한국원자력연구원 Korea Atomic Energy Research Institute

Molten Salt Reactor

- Characteristics of Liquid Fuel Reactor
 - ◆ Change in the concentration of delayed neutron precursors in the core
 - **◆** Loss of the delayed neutron in the external circulation
 - Reactivity decrease
- Calculation of
 - ◆ The change in reactivity according to the fuel flow
 - ◆ The difference in reactivity due to the difference in flow rate according to the region

02 Reactor model and Method

2 Reactor model and Method Reactor model

MSR model

- ◆ Homogeneous Cylindrical Bare Reactor
- Refer to the previous work[F.mattioda, P.ravetto, G.Ritter]

Reactor type	Homogeneous Cylindrical Bare Reactor
Reactor dimension	D=3.0m, H=3.0m
Neutron energy group	3 groups
Delay neutron precursor	6 families

<Reactor description (D=diameter, H=height)>

<Conceptual model of MSR (X-Z plane)>

2 Calculation method (1)

The Multi-group Diffusion model

- Steady-state balance equation of multi-group diffusion model
- Using Finite Difference Method(FDM)

2 Calculation method (2)

Boundary Condition

- **♦** Flux zero boundary
- Decay of delayed neutron precursors in the external circulation

	Boundary condition				
Neutron flux	$\Phi_g(z=0) = \Phi_g(z=H) = \Phi_g(r=R) = 0$				
Delayed neutron precursors	$C_i(z = 0) = C_i(z = H)e^{-\lambda_i T_R}$ $T_R = Recirculation time$				

2 Calculation method (3)

Assumption

- ◆ All fission/delayed neutrons are belong to highest energy group.
- ◆ Axial flow of fuel(Only Z-direction)
- During external circulation
 - Delayed neutron precursors are uniformly mixed.
 - Re-entered into the bottom of the core.
- Volume of the external circuit
 - 2/3 of the volume of the core
 - The faster the flow rate of the fuel, the shorter the recirculation time.

2 Calculation method (4)

Neutron flux

lacktriangle 3D R-Z problem with Box scheme ($\overline{\Phi}$)

Delayed Neutron Precursor concentration

•
$$u \frac{dC}{dz} + \lambda C = \beta * \nu \Sigma_f \Phi$$
 ->integrating over ΔV

◆ 1-st region of z-direction

$$C(z_1) = \frac{\left[\beta \nu \Sigma_f \overline{\Phi_1} \Delta V - \left[\frac{\lambda}{2} \Delta V - \frac{u}{\Delta z} \Delta V\right] C(z_0)\right]}{\left[\frac{\lambda}{2} \Delta V + \frac{u}{\Delta z} \Delta V\right]}$$

n-th region of z-direction

$$C(\mathbf{z}_n) = \frac{\left[\beta \nu \Sigma_f \overline{\Phi_n} \Delta V - \left[\frac{\lambda}{2} \Delta V - u \Delta A\right] C(\mathbf{z}_{n-1})\right]}{\left[\frac{\lambda}{2} \Delta V + u \Delta A\right]}$$

2 Calculation method (5)

Material data

- ◆ 3 neutron energy groups(Refer to the previous work[F.mattioda, P.ravetto, G.Ritter])
- ◆ 6 delayed neutron precursor families(U-235 data)

Group	Σ_a	Σ_f	ν	D	$\Sigma_{g o g}$	$\Sigma_{g o g+1}$
1	2.22E-4	4.78E-5	3.12	1.34	2.28E-1	1.97E-2
2	1.13E-3	3.57E-4	2.89	0.761	4.31E-1	5.94E-3
3	1.68E-2	6.00E-3	2.88	0.800	4.00E-1	-

<Material data>

Family	1	2	3
Fraction (eta_i)	2.150E-04	1.424E-03	1.274E-03
Half-life [sec]	55.72	22.72	6.22
Family	4	5	6
Fraction (eta_i)	2.568E-03	7.480E-04	2.730E-04
Half-life [sec]	2.30	0.610	0.230

<Six delayed neutron precursor families>

03 Results

03K_{eff} of solid fuel

- Fuel velocity = 0 cm/s
- Analytic solution
 - $k_{eff} = 0.931328$
- This study
 - ◆ Convergence condition: Less than 10⁻⁸ [K_{eff}, Flux]

	R direction Mesh number	Z direction Mesh number	k _{eff}	Δk(pcm)
Case 1	30개	30개	0.931365	3.7
Case 2	15개	15개	0.931475	14.7

Uniform flow rate

- **◆** The fuel flow rate is the same anywhere in the core.
- ◆ The faster the flow rate, the greater the loss of reactivity.
 - The greater the loss of delay neutron precursors

Fuel Velocity	Recirculation time	K _{eff}	Reactivity loss[pcm]
0 cm/sec	inf	0.931365	0 pcm
20 cm/sec	10 sec	0.929301	-238
40 cm/sec	5 sec	0.928682	-310
50 cm/sec	4 sec	0.928510	-330

Non-uniform flow rate (2 region)

- ◆ The average fuel flow rate of the core is the same with uniform flow rate.
- **♦** The recirculation time is the same with uniform flow rate case.
- Average fuel flow velocity : A
 - The flow rate of inner region (0~75cm) = N * outer region (75~150cm)
 - N=2 -> 1.6A, 0.8A
 - N=3 -> 2A, (2/3)A

Non-uniform flow rate (2 region)

◆ The inner flow rate is faster than the average, the loss of reactivity occurs more than 10% compared to uniform flow rate case.

Average	Average	X1	X2		Х3	
Fuel	Recircula	Reactivity loss[pcm]	Reactivity loss[pcm]		Reactivity loss[pcm]	
Velocity [cm/sec]	tion time		Inner core fuel velocity	Outer core fuel velocity	Inner core fuel velocity	Outer core fuel velocity
0	inf	0	0 p	cm	0 pcm	
U	IMI	0	0	0	0	0
20	10 sec	10 330	-275 pcm (15.5%)		-288 pcm (21.0%)	
20	10 Sec	-238	32cm/sec	16cm/sec	40cm/sec	13.3cm/sec
40	5 sec	-310	-346 pcm	n (11.6%)	-357 pcr	n (15.2%)
40	3 360	-310	64cm/sec	32cm/sec	80cm/sec	26.6cm/sec
50	50 4 sec -330	-365 pcm	ո (10.6%)	-375 pcr	n (13.6%)	
50		-330	80cm/sec	40cm/sec	100cm/sec	33.3cm/sec

Non-uniform flow rate (3 region)

- ◆ The average fuel flow rate of the core is the same with uniform flow rate.
- ◆ The recirculation time is the same with uniform flow rate case.
- Average fuel flow velocity : A
 - The flow rate of inner region (0~50cm) = 3N
 - The flow rate of middle region (50~100cm) = 2N
 - The flow rate of outer region (100~150cm) = 1N

27A/14, 18A/14, 9A/14

◆ Three region is converted to two region, the difference in flow rates between the inner and outer region is 1.94:1, which is similar to Double flow rate case.

Non-uniform flow rate (3 region)

◆ The difference in flow rate according to the region shows a different in reactivity reduction.

Average		Uniform flow rate	3 Region (2 region X2 case)			
Fuel Velocity	Recirculation time	Reactivity loss[pcm]	Reactivity loss[pcm]			
[cm/sec]			Inner core fuel velocity	Mid core fuel velocity	Outer core fuel velocity	
0	O :£	0 nem	0 pcm			
U	1111	inf 0 pcm	0	0	0	
20	10 sec	220	-289, 21.4%, (-275, 15.5%)			
20	10.260	-238	38.57cm/sec	25.71cm/sec	12.85cm/sec	
40	40 5	210	-360, 16.1%, (-346, 11.6%)			
40	5 sec	-310	77.14cm/sec	51.42cm/sec	25.71cm/sec	
50	A 505	-330	-379, 14.8%, (-365, 10.6%)			
50	4 sec		96.42cm/sec	64.28cm/sec	32.14cm/sec	

04 Conclusions

Conclusions 4-Conclusions

- 1. The decrease in reactivity due to the movement of nuclear fuel in the molten salt reactor is one of the important information for safety assessment.
 - Change in the concentration of delayed neutron precursors in the core
 - Loss of the delayed neutron in the external circulation
 - **Reactivity decrease**
- The faster the flow rate, the bigger loss of reactivity.
- Even if the average flow rate of the entire core is the same, it can be seen that the difference in flow rate according to the region shows a different in reactivity reduction.
- The reactivity loss should be calculated by considering not only the average flow rate but also the flow rate for each area.

14 Future Works

- 1. Feature of the Molten Chloride Salt Fast Reactor
 - Relatively large diffusion coefficient than thermal reactor
 - About 3~5[cm] ($D = \frac{1}{3\Sigma_{tr}}$)
- 2. Check if the diffusion theory fits well on the Fast Reactor
 - Find the appropriate equivalence theory

THANK YOU

This research was supported by Korea Atomic Energy Research Institute (NTIS-1711139325) and National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (2021M2D2A2076383)

