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1. Introduction 
 

There are a number of methods to remedy the ill-
posedness of the basic one-dimensional two-fluid model. 
The regularization of the two-fluid model includes the 
interfacial pressure, hydrostatic pressure, and surface 
tension, etc. 

Holmås et al. [1] added artificial axial diffusion terms 
to the 1D incompressible mass and momentum equations, 
which resulted in well-posed two-fluid model. Fullmer et 
al. [2] extended that concept to create a model that 
prescribed the cutoff length scale precisely. Fullmer et al. 
[3] showed that that concept was effective to remedy the 
ill-posedness in the Kelvin-Helmholtz instability flow. 

However, the previous works on the artificial diffusion 
terms has a critical problem that the total fluid mass is 
not conserved. This study proposes a solution to the 
problem.  

 
2. Theory 

 
2.1 Existing Model [2,3] 

 
Artificial phase change terms are added to the 1D 

incompressible mass equations as follows: 
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Artificial viscosity terms are considered as follows: 
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Assuming g l g lν ε ε ν ν= = = = , the linear stability 
analysis yields the following dispersion relation: 
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where l g g lρ α ρ α ρ= + . For large wavenumbers, the 
growth rate Iω  becomes negative, i.e., well-posed. The 
critical wavenumber is then given by 
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However, a critical problem is non-conservation of the 
total mass. The sum of the right-hand sides of Eqs. (1) 
and (2) does not become zero, which means that the total 
mass is not conserved. Mathematically, no matter how 
the value of ν  is small, the two-fluid model is well-
posed. However, the value of ν  should be large enough 
from the practical point of view (finite mesh size). At the 
same time, the value should not be so large that the total 
mass error becomes severe.  
 
2.2 Proposed Model (Present) 
 

To avoid the problem in the existing model, we 
suggest the mass equations as follows: 

 
2

2( ) ( ) g
g g g g g gu

t x x
α

α ρ α ρ ερ
∂∂ ∂+ =

∂ ∂ ∂
,  (7) 

 
2

2( ) ( ) l
l l l l l gu

t x x
αα ρ α ρ ερ ∂∂ ∂+ =

∂ ∂ ∂
.  (8) 

Though the mass of each phase is not conserved, the total 
mass is conserved. This is an obvious advantage. 

Assuming g lν ν ν ε= = = , we obtain the critical 
wavenumber as follows: 
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 (9) 
This new model makes the two-fluid model well-posed 
at larger wavenumbers. This might be a disadvantage. 

 
3. Results and discussion 

 
In this paper, the test results for the water faucet 

problem in a vertical pipe with a length of 6 m and a 
diameter of 1 m are briefly discussed. Water is injected 
from the top at a velocity of 10 m/s. 

 
3.1 Basic Two-Fluid Model 

 
Figures 1 and 2 shows the simulation results when the 

artificial terms are not added to the mass and momentum 
equations. Figure 1 shows the water distributions at t = 
0.3 s, except for the case with 6 mmxΔ =  (1000 cells). 
Figure 2 shows the total mass errors. For the case with 
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6 mmxΔ = , the total mass error suddenly increases at t 
= 0.291382 s and is unexpectedly terminated, which is 
due to the ill-posedness of the basic two-fluid model. 
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Fig. 1. Water fraction distributions at 0.3 s for the basic model 
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Fig. 2. Mass errors for the basic model 

 
3.2 Existing Model 

 
Figures 3 and 4 show the results when Eqs. (1) ~ (4) 

are used with 0.25 (2 ) | | /(2 )g lD u uν ρ π= − . Even for 
the case with 3.75 mmxΔ =  (1600 cells), the water 
fraction is reasonably predicted. However, as shown in 
Fig. 4, the total mass error reaches up to 0.05%. In view 
of the calculation time 0.3 s, this mass error is 
significantly large.  
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Fig. 3. Water fraction distributions at 0.3 s for the existing 
model 
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Fig. 4. Mass errors for the existing model 

 
2.4 New Model 
 

Figures 5 and 6 show the results when Eqs. (7), (8), 
(3), and (4) are used with 0.25 (2 ) | | /(2 )g lD u uν ρ π= − . 
Note that the total mass errors are significantly decreased 
such that they are negligible. 
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Fig. 5. Water fraction distributions at 0.3 s for the proposed 
model 
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Fig. 4. Mass errors for the proposed model 

 
3. Conclusions 

 
In this paper, artificial phase change terms were 

suggested to make the two-fluid model well-posed while 
the total mass is conserved. 

The proposed model was tested for the water faucet 
problem. The well-posedness was improved and the total 
mass error were significantly decreased.  
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