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1. Introduction 

 
Kinetic simulations for nuclear fusion devices such as 

tokamaks need nonlinear Coulomb collision operators 
for calculating collisions among multiple plasma species. 
Considering tungsten wall in ITER, different charge 
states of tungsten ions that emerged in plasmas would 
demand to handle many plasma species [1]. However, 
the collision operators would take a huge computational 
cost as floating-point operations of the operator grow 
with ~𝑂#𝑁!"#%, where 𝑁!" is the number of species. 

 In this work, we investigate the feasibility of deep 
learning (DL)-based FPL collision operators to 
accelerate collision calculation in the kinetic simulations. 
Currently in particular, XGC (X-point Gyrokinetic Code) 
uses a nonlinear Fokker-Planck-Landau (FPL) collision 
operator based on Finite Volume Method (FVM) [2]. 
Our preliminary results showed the promising potential 
that DL model can learn advection and diffusion features 
of collision operators and ultimately can be a surrogate 
of physical collision models. 
 

2. Methods and Results 
 
2.1 Fokker-Planck-Landau equation 

 
The FPL equation is written as [2] 
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where 𝐶$%  denotes the collision operator between 
species “a” in 𝑣 coordinate and field species “b” in 𝑣& 
coordinate. 𝑒 , 𝑚,  and 𝑓 denote charge, mass, and 
probability density function (pdf) of the species 
respectively, where the species type is represented as 
subscript 𝑎 and 𝑏. And ln Λ is the Coulomb Logarithm, 𝑡 
is the time and 𝑼 is a tensor defined with relative velocity 
𝒖 = 𝑣 − 𝑣&, 

 

𝑼 =
𝑢#𝑰 − 𝒖𝒖

𝑢' 	. 
 
2.2 Preprocessing the Training Data 
 

Using the FPL solver based on FVM written in 
MATLAB [2], our raw data on a two-dimensional 

velocity grid (𝑁(! ×𝑁(∥ = 40 × 60) was prepared. To 
train our model to handle various anisotropic 
temperature cases, we simulated over a broad range of 
v∥axis temperature (𝑇v∥=71eV~99eV) while temperature 
along v* axis was fixed to 𝑇v! =100eV. For each 
condition, simulation was held for consecutive 49 time-
steps. Particle’s pdf at each time step on the velocity grid 
was saved and used as training data. A set of 1,296 data 
were divided to a training set (n=1,008), a validation set 
(n=144) and a test set (n=144). All input data were 
normalized to [0,1], and the range of output data was 
recovered to the original range. 
 
2.3 Model Architecture 
 

Our model uses convolutional neural network (CNN) 
based encoder-decoder networks [3]. CNN fits our task 
as it preserves the spatial structure of the data. The 
overall schematic of model architecture is shown in Fig. 
1. The model consists of an encoder that learns the 
overall context of data while image size is reduced via 
max-pooling and a decoder that constructs images with 
localized context. Skip connection concatenates feature 
maps in the encoder path and upsampled features in the 
decoder path. This helps our model make use of fine 
details learned in the encoder path when it constructs an 
image in the decoder path. For a stable training process, 
Kaiming He initialization and Batch normalization were 
applied to each layer with ReLU activation functions, 
except the last convolutional layer. If a pdf at an arbitrary 
time step with some anisotropic temperature condition is 
given, the trained DL-based FPL model produces a pdf 
at the next time step. 95,585 trainable parameters are 
used in the neural network.  

When training the neural network, model parameters 
were updated to minimize mean squared error (MSE) 
loss functions. Our MSE represents the error between 
FVM and the model’s output for a given input and is 
defined as 
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where 𝑓label denotes pdf from FVM, namely our training 
data and 𝑓DL  is our model’s output. 𝑖  and 𝑗 indices are 
used as the pdf is two-dimensional (Sec. 2.2). Adam 
optimizer was used and learning rate decay optimally 
decreased learning rate exponentially as epoch 
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progresses for fast and steady training. To avoid 
overfitting in which the model is too optimized for train 
data, losing its generality, the model parameters were 
updated only when the MSE loss of the validation data 
was reduced at every epoch. The model was trained over 
301 epochs. 
 

 
 
Fig. 1. Overview of our DL-based FPL solver model. Conv 
3x3 stands for a convolutional layer with 3x3 kernel and 
padding with 1 pixel. Skip connection copies and concatenates 
feature maps in the encoder and upsampled feature maps in 
the decoder. In the encoder, image size is halved by 2x2 max 
pooling and in the decoder, it’s upsampled to its original size. 
 
2.4 Model evaluation 
 
 To evaluate our model, the test dataset which is not 
covered in the training process was used (Sec. 2.2). For 
evaluation metric, we used Peak Signal-to-Noise Ratio 
(PSNR), defined as  
 

 𝑃𝑆𝑁𝑅 = 10 ∙ log57 N
𝑠#

𝑀𝑆𝐸P, (3) 

 
where 𝑠 is the difference between each image’s 
maximum and minimum value and 𝑀𝑆𝐸 is what 
defined in (Eq. 2). 
 
2.5 Results 
 

Comparison between the output from our DL-based 
FPL collision operator and the ground truth from prior 
FVM simulation is presented in Fig. 2. This shows the 
results of the first time-step on the three different 
anisotropic temperature condition cases in the test 
dataset. Table I shows the average PSNR over the entire 
49 time-steps of each three cases. In terms of PSNR, all 

three cases got a high score. Prediction performance for 
𝑇v∥ = 78eV was best, followed by 88eV and 98eV in 
order. This implies that our model is more difficult in 
predicting cases as 𝑇v∥ is closer to 𝑇v! = 100eV, i.e., 𝑇v∥ 
and 𝑇v! are so close that pdf change over a time is too 
small (max ~0.02% difference of the previous time step). 
However, more meaningful thing is that we found our 
model's output converged to the equilibrium state with 
diffusive behavior, which indicates neural networks can 
learn the physical phenomenon governed by the FPL 
collision equation. 

 

 
 
Fig. 2. Comparison between ground truths and DL-based FPL 
model outputs. Data are from the first time-time step of each 
temperature case. 
 

Table I: PSNR for test cases 

𝑇v∥ 
(eV) PSNR 

78 57.4380 
88 56.8336 
98 56.0377 

 
3. Conclusions 

 
We introduced a CNN-based DL-FPL model to 

accelerate the FPL collision operator. The deep learning 
model efficiently reproduced results from a FVM based 
FPL solved, with high PSNR. Replacing computationally 
expensive collision operators with deep learning models 
is anticipated to accelerate computation in future multi-
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species simulations. In this preliminary study, our DL 
model produced a pdf (𝑓) at the next time step. To handle 
multi species collision later, however, we are currently 
working on an advanced model that produces a pdf 
change (∆𝑓). In addition, we are developing a method 
that our DL model satisfies physical conservation such 
as mass, momentum, and energy. For training models, 
we could implement conservation constraints into loss 
functions, which we will leave as future work. 
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